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Abstract

This paper proposes a model of corporate control and oligopolistic competition under

common ownership. Each firm’s conduct results from Nash bargaining (NB) among

shareholders and firms play a Nash equilibrium in Nash bargains. NB encompasses

a rich class of models of corporate control under common ownership, including the

current canonical model due to O’Brien and Salop (2000, OS), which has however

important deficiencies. A specification of NB overcomes these deficiencies and yields

theoretical results and policy implications that contradict those derived under OS. I

use Nash-in-Nash to study the competitive effects of changes in corporate control pro-

viding a rationale for a policy proposal requiring institutional investors to be passive.
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1 Introduction

Perfect competition is crucial for shareholders to unanimously agree on own-firm profit

maximization (Hart, 1979), which has been the standard assumption on firm behavior

at least since Fisher’s (1930) separation theorem. Yet, recent work has shown that firm

market power has been widespread and increasing in the U.S. economy (Loecker et al.,

2020). At the same time, there is evidence that absent perfect competition firms may not

seek to maximize own profit. Particularly, common ownership has been argued to induce

firms to (partially) internalize the effect their actions have on competing firms’ profits,

thus softening competition (e.g., see Posner et al., 2017; Azar et al., 2018; Schmalz, 2018).

In studying such anti-competitive effects, a model of corporate control other than

own-profit maximization is necessary. This model will translate an industry’s ownership

structure into corporate conduct, which will in turn translate into equilibrium outcomes.

The model needs to describe how firm policy will be shaped from shareholders’ conflicting

interests. For example, shareholders with smaller holdings in competing firms will want

the firm to price more aggressively than shareholders with larger stakes in other firms.

Modeling corporate control can be more or less complicated depending on the ownership

structure. When a common owner (i.e., an investor that holds shares in multiple firms

within an industry) holds the majority of a firm’s shares, it is natural to model that firm

as trying to maximize that common owner’s wealth (from her holdings across all firms).

Similarly, if there is a majority non-common owner, then it is reasonable to assume that

the firm will seek to maximize its own profit.1 However, in practice most large firms are

held by multiple minority shareholders, whose holdings across firms in an industry vary.

It is then not as simple to decide on a satisfying model of corporate control.

Existing work has so far followed O’Brien and Salop (2000) in using the following

model of corporate control, which I call the weighted average portfolio profit (WAPP)

model.2 Given a set 𝑁 of investors who hold all shares in the industry and a set 𝑀 of

firms, each firm 𝑗 maximizes a weighted average of its shareholders’ portfolio profits, that

1Previous works have recognized this and for simplicity assumed each firm to be controlled by a
majority shareholder (e.g., see Anton et al., 2021).

2Similar ideas can be traced back to Rotemberg (1984) and Bresnahan and Salop (1986).
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is

∑︁
𝑖∈𝑁

𝛾𝑖𝑗
∑︁
𝑘∈𝑀

𝑠𝑖𝑘𝜋𝑘 ∝ 𝜋𝑗 +
∑︁

𝑘∈𝑀∖{𝑗}

=:𝜆𝑗𝑘⏞  ⏟  ∑︀
𝑖∈𝑁 𝛾𝑖𝑗𝑠𝑖𝑘∑︀
𝑖∈𝑁 𝛾𝑖𝑗𝑠𝑖𝑗

𝜋𝑘,

where 𝑠𝑖𝑘 is shareholder 𝑖’s cash-flow right over firm 𝑘’s profits, 𝛾𝑖𝑘 her control power over

firm 𝑘 (which depends on the ownership structure 𝑠*𝑘 of the firm), and 𝜋𝑘 is firm 𝑘’s

profit.3 That is, firm 𝑗’s manager maximizes a weighted average of firm 𝑗’s shareholders’

portfolio profits (i.e., their total earnings from their cash-flow rights over all firms in the

industry). Equivalently, firm 𝑗 maximizes its own profit plus each other firm 𝑘’s profit

weighted by 𝜆𝑗𝑘, the Edgeworth coefficient of effective sympathy from firm 𝑗 towards

firm 𝑘 (i.e., the weight firm 𝑗 assigns to firm 𝑘’s profit with the weight on its own profit

normalized to 1). It is said that there is proportional control if 𝛾𝑖𝑘 = 𝑠𝑖𝑘 for all 𝑖 and 𝑘.

However, the WAPP model has some undesirable properties. It has been criticized to

make counter-intuitive predictions regarding the effect of ownership dispersion within a

firm 𝑗 on the degree 𝜆𝑗𝑘 to which that firm will internalize another firm 𝑘’s profit (e.g., see

Gramlich and Grundl, 2017; O’Brien and Waehrer, 2017; Brito et al., 2023). As ownership

by non-common (resp. common) owners becomes dispersed, firm 𝑗 tends to follow only

the common (resp. non-common) owners’ interests.4 While to an extent this effect seems

reasonable, the WAPP model mechanically produces it to an extreme degree for almost

any assumption on 𝛾’s (including proportional 𝛾’s). The effect is particularly important

given that large investment funds are more diversified than smaller shareholders.

I propose an alternative model of corporate control, where firm 𝑗’s conduct is modeled

as the result of (asymmetric) Nash bargaining (NB) among firm 𝑗’s shareholders with

the actions of the other firms taken as given. Shareholders bargain á la Nash given a

disagreement payoff function that maps each possible ownership structure in the industry

and action profile of the other firms to a shareholder payoff vector (that will result from

the action that firm 𝑗 will take in case of disagreement among its shareholders). The

3If all shares have cash-flow rights, 𝑠𝑖𝑘 is equal to the proportion of firm 𝑘’s shares that are held by 𝑖.
4For example, consider the case where firm 𝑗 has two types of shareholders: (i) common owners, who

are invested equally in each firm in the industry, and (ii) non-common owners, who only hold shares of
firm 𝑗. Under any realistic assumptions on 𝛾’s, if we hold fixed the total amount of shares held by each
group of shareholders, as shares held by non-common owners are dispersed across more non-common
owners, 𝜆𝑗𝑘 increases and in the limit where the number of non-common owners goes to infinity, 𝜆𝑗𝑘 → 1.
The case where the number of common owners increases is analogous.
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weights (i.e., exponents) in the asymmetric Nash product of firm 𝑗 are a function of firm

𝑗’s ownership structure 𝑠*𝑗, as is 𝛾*𝑗 in WAPP. The equilibrium concept is then a Nash

equilibrium in Nash bargains.

Like WAPP, the NB model can best be understood as an “as-if” assumption. This

“as-if” approach allows for a rich generalization of the WAPP model. There are five main

takeaways.

First, using the NB model is without loss of generality in the following sense. Restricting

attention to NB mechanisms of corporate control essentially amounts to only considering

the class of efficient mechanisms (i.e., mechanisms that never lead to firm actions such

that alternative actions by the firm would make every controlling shareholder of that

firm weakly better off and at least one strictly so).5 Although appealing, efficiency is a

minimal assumption. Thus, obtaining a satisfying model of corporate control amounts to

choosing disagreement payoff and weights functions in the Nash product that will give

rise to additional (to efficiency) desirable properties. The WAPP mechanism is efficient

and thus a specific way of choosing these functions but with the shortcomings described

above.

Second, the random dictatorship (RD) specification of the disagreement payoff function

solves this problem. This specification poses that in case of disagreement among the

shareholders of firm 𝑗, a lottery is conducted: each shareholder gets to pick with some

exogenous probability the action of firm 𝑗 and the disagreement payoff of each shareholder

is her expected portfolio profit from this lottery.6 Under this specification of NB, a

natural connection between parameters in the Nash product and properties of a firm’s

best response function arises. Particularly, a proportional control assumption on the

parameters of the model corresponds to a behavioral definition of proportional control (i.e.,

a definition that refers directly to a firm’s best response function rather than parameters

of the functional form of its objective function).

Third, using NB with RD disagreement payoffs can deliver significantly different

predictions and policy implications. I study the effect of a policy that restricts the level

of common ownership in a Cournot duopoly and show that the policy increases consumer

welfare under WAPP but may harm it under NB.

5This is a generalization of Pareto efficiency in the sense that Pareto efficiency need only be satisfied
with regard to a (possibly strict) subset of the firm’s shareholders, who I call “controlling” shareholders.

6The probabilities in the lottery depend on the ownership structure of the firm.
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Fourth, the first order conditions that describe firm behavior under the NB model are

analogous to those derived under the WAPP model.7 Thus, given the generality of NB, it

is sufficient to perform comparative statics exercises under NB; different specifications of

NB—including WAPP—will then amount to using the corresponding control weights.

Last, I characterize the equilibrium of a homogeneous product Cournot market with

common ownership under NB.8 I show that if a firm is underproducing (resp. overpro-

ducing) relative to a shareholder’s preferences and that shareholder’s control over that

firm increases exogenously, then that firm’s quantity will increase (resp. decrease). In

the standard case, this means that the price will increase (resp. decrease). Particularly, I

derive an intuitive measure of whether the firm is under- or overproducing relative to the

investor’s preferences providing a rationale for the policy proposal by Posner et al. (2017)

that institutional investors be required to be passive if they accumulate large amounts of

shares in multiple competing firms.

After this introduction, section 2 reviews related literature. Section 3 presents the

model and section 4 provides a characterization of NB and compares it to WAPP. Section

5 applies NB to a homogeneous product Cournot market. Section 6 concludes. All proofs

are gathered in Appendix A. Appendix B provides supplementary results.

2 Related literature

The Nash-in-Nash solution concept has become a standard tool, since it was proposed

by Horn and Wolinsky (1988), who study merger incentives when there are exclusive

vertical relationships. The current paper fits into the wide literature that has leveraged

the Nash-in-Nash solution to study equilibrium outcomes in various environments where

the division of surplus between parties (e.g., upstream and downstream firms) plays an

important role.9 It applies it to the case of oligopolistic competition among firms when

within each firm, shareholders (with varying levels of holdings in competing firms) bargain

to decide on firm policy.

7The only difference is the following. Under WAPP, the exogenous control weights of firm 𝑗’s
shareholders, 𝛾*𝑗 (depending only on the exogenous ownership structure 𝑠*𝑗 of the firm), appear in
the FOC. Under NB, analogous control weights appear in the FOC but are endogenously determined.
Therefore, equilibria under NB and WAPP have analogous characterizations. Of course, the endogeneity
of control weights comes with a loss in tractability.

8Given the above, this characterization is also valid under WAPP.
9For a review of related literature see Collard-Wexler et al. (2019), who also offer a non-cooperative

foundation for the solution concept for the case of multiple upstream and downstream firms.
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In contrast, theoretical work on corporate control under common ownership has so

far focused on microfounding the WAPP mechanism in models of shareholder voting

(e.g., see Azar, 2017; Brito et al., 2018; Moskalev, 2019). Azar and Ribeiro (2022) go a

step further modifying the voting model to account for managerial entrenchment, which

leads to a generalization of WAPP.10 They assume that the manager’s preference is to

maximize her firm’s own profit, which implies that relative to WAPP their model is

closer to own-profit maximization. Their model also predicts that as ownership becomes

dispersed, the manager has more power and thus internalizes the shareholders’ interests

to a lesser degree. Although their empirical estimates are qualitatively consistent with

this prediction, they show that their voting model overstates this effect. Crucially, it

predicts that as ownership becomes infinitely dispersed, the manager tends (in the limit)

to maximize own profit—even if all the firm’s owners are completely diversified across the

industry.

Brito et al. (2023) also try to overcome the shortcomings of WAPP by modifying some

of the assumptions in the voting models that microfound WAPP. They argue that under

certain assumptions, the resulting weighted average profit weight (WAPW) model does

not give excessively more power to larger shareholders. However, I show that WAPW is a

reframing of WAPP and even though it indeed gives rise to a parametrization of WAPP

which deals with the issue, that parametrization is unrealistic: it gives all shareholders of

a firm the same amount of control, so that the firm maximizes the unweighted average of

its shareholders’ portfolio profits.

Apart from overcoming these issues, my approach also differs methodologically from

previous works. Instead of microfounding a corporate control model through shareholder

voting, I take an axiomatic approach, which allows for more flexibility and avoids the

narrow predictions of shareholder voting models. NB mechanisms are characterized as

the class of efficient mechanisms and WAPP as a special case of NB. Proportional control

is behaviorally defined in terms of a firm’s best response correspondence and a natural

connection between this definition and the parameters of the firm’s objective function

under NB is provided.

10It can be shown that their model is equivalent to a generalization of WAPP where the manager of
firm 𝑗 is treated as a “virtual” shareholder of the firm with control power 𝛾𝑚

𝑗 and “cash-flow right” 𝑠𝑚𝑗
normalized to 𝑠𝑚𝑗 = 1 (so that 𝑠𝑚𝑗 +

∑︀
𝑖∈𝑁 𝑠𝑖𝑗 = 2).
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3 A model of corporate control and oligopolistic competition

under common ownership

A tuple 𝐺 := ⟨𝑁,𝑀, (𝐴𝑗)𝑗∈𝑀 , (𝜋𝑗)𝑗∈𝑀 , (𝑠𝑖𝑗)(𝑖,𝑗)∈𝑁×𝑀⟩ characterizes an oligopoly game with

common ownership, where 𝑁 := {1,2, . . . ,𝑛} is a set of 𝑛 investors, 𝑀 := {1,2, . . . ,𝑚} is a

set of 𝑚 firms, 𝐴𝑗 is firm 𝑗’s action space. Let the action profile space be denoted by 𝐴 :=

×𝑗∈𝑀𝐴𝑗. For an action profile 𝑎 ≡ (𝑎1, . . . ,𝑎𝑚) ∈ 𝐴, where 𝑎𝑗 ∈ 𝐴𝑗 is firm 𝑗’s action, 𝑎−𝑗

denotes the profile of actions of all firms except 𝑗, and accordingly 𝐴−𝑗 := ×𝑘 ̸=𝑗𝐴𝑘. Firm 𝑗’s

profit function is 𝜋𝑗 : 𝐴 → R and 𝑠 ∈ 𝑆 :=
{︀
𝑠 ∈ [0,1]𝑛 × [0,1]𝑚 :

∑︀
𝑖∈𝑁 𝑠𝑖𝑗 = 1 ∀𝑗 ∈ 𝑀

}︀
is the (exogenous) ownership matrix, where 𝑠𝑖𝑗 denotes investor 𝑖’s share of firm 𝑗. This

means that 𝑖 has a cash-flow right over fraction 𝑠𝑖𝑗 of firm 𝑗’s profits. Given a matrix 𝐴,

let 𝐴𝑖* and 𝐴*𝑗 denote 𝐴’s 𝑖-th row and 𝑗-th column, respectively.11

Definition 1. An investor 𝑖 is a shareholder of firm 𝑗 if 𝑠𝑖𝑗 > 0. 𝑁𝑗(𝑠*𝑗) := {𝑖 ∈ 𝑁 : 𝑠𝑖𝑗 > 0}

is the set of shareholders of firm 𝑗.

Investor 𝑖’s total portfolio profit function is 𝑢𝑖(𝑎,𝑠𝑖*) :=
∑︀

𝑗∈𝑀 𝑠𝑖𝑗𝜋𝑗(𝑎). Define a mixed

action profile 𝛼 ≡ (𝛼𝑗)𝑗∈𝑀 , where 𝛼𝑗 ∈ Δ(𝐴𝑗) is a probability measure over 𝐴𝑗. 𝜋𝑗(𝛼) is

firm 𝑗’s expected profit and 𝑢𝑖 (𝛼, 𝑠𝑖*) is investor i’s expected payoff from 𝛼.12

3.1 Individual firm behavior: corporate control mechanisms

A corporate control mechanism 𝑔𝑗 (𝛼−𝑗,𝑠) of firm 𝑗 determines the set of actions deemed

choosable by firm 𝑗 for every ownership structure is 𝑠 and the other firms’ action profile

𝛼−𝑗.
13

Definition 2. Firm 𝑗’s corporate control mechanism is a correspondence 𝑔𝑗 : ×𝑘 ̸=𝑗Δ(𝐴−𝑘)×

𝑆 ⇒ Δ(𝐴𝑗) that maps every ownership matrix 𝑠 ∈ 𝑆 and action profile of the other firms

𝛼−𝑗 ∈ Δ(𝐴−𝑘) to a nonempty set 𝑔𝑗 (𝛼−𝑗,𝑠) ̸= ∅ of actions of firm 𝑗.

11The notation for a function that maps to an 𝑛×𝑚 space is analogous.
12Abusing notation I use both pure and mixed action profiles as arguments in the same function.
13In principle, the corporate control mechanism should describe firm behavior for any possible profit

functions 𝜋, given that market conditions such as technology and demand may change. To economize on
notation, I suppress this dependence on 𝜋.
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3.1.1 The weighted average portfolio profit (WAPP) mechanism

Let Δ𝑛 denote the 𝑛-dimensional simplex. I first describe the mechanism of O’Brien and

Salop (2000), which I call the weighted average portfolio profit (WAPP) mechanism.

Definition 3. Firm 𝑗’s corporate control mechanism 𝑔𝑗 is a weighted average portfolio

profit mechanism if there exists a control power function 𝛾*𝑗 : Δ
𝑛 → Δ𝑛 such that for

every 𝑠 ∈ 𝑆 and 𝛼−𝑗 ∈ ×𝑘 ̸=𝑗Δ(𝐴−𝑘)

(i) (weighted average portfolio profit maximization)

𝑔𝑗 (𝛼−𝑗,𝑠) = WAPP𝛾*𝑗 (𝛼−𝑗,𝑠) := argmax
𝛼𝑗∈Δ(𝐴𝑗)

{︃∑︁
𝑖∈𝑁

𝛾𝑖𝑗(𝑠*𝑗)𝑢𝑖(𝛼𝑗, 𝛼−𝑗, 𝑠𝑖*)

}︃
,

(ii) (control exclusive to shareholders) for every 𝑖 ∈ 𝑁 , 𝑠𝑖𝑗 = 0 =⇒ 𝛾𝑖𝑗(𝑠*𝑗) = 0.

This can be rewritten as

WAPP𝛾*𝑗 (𝛼−𝑗,𝑠) = argmax
𝛼𝑗∈Δ(𝐴𝑗)

⎧⎨⎩ 𝜋𝑗(𝛼) +
∑︁

𝑘∈𝑀∖{𝑗}

=:𝜆𝑗𝑘(𝑠)≥0⏞  ⏟  ∑︀
𝑖∈𝑁 𝛾𝑖𝑗(𝑠*𝑗)𝑠𝑖𝑘∑︀
𝑖∈𝑁 𝛾𝑖𝑗(𝑠*𝑗)𝑠𝑖𝑗

𝜋𝑘(𝛼)

⎫⎬⎭ ,

where 𝜆𝑗*(𝑠) is the vector of weights firm 𝑗 places in firms’ profits with 𝜆𝑗𝑗 normalized to

1. 𝜆𝑗𝑘 is called the Edgeworth (1881) coefficient of effective sympathy of firm 𝑗 towards

firm 𝑘. The numerator of 𝜆𝑗𝑘 is a measure of the level of cross-holdings of shareholders of

firm 𝑗 in firm 𝑘 ̸= 𝑗. The denominator measures ownership concentration in firm 𝑗.

In the literature, the case where the control weights 𝛾*𝑗 are proportional to the investors’

shares in firm 𝑗 is called proportional control. This is the most common assumption

used in empirical work. An alternative specification that has received attention (e.g.,

see Azar and Vives, 2022) assumes 𝛾*𝑗 to be the (normalized) Banzhaf power indices

of the shareholders.14 Brito et al.’s (2023) model gives rise to an alternative function

𝛾*𝑗, which I call modified Banzhaf. Finally, I describe a simple control power function

that is a generalization of proportional control and can account for the case where large

shareholders have more or less than proportional control.

14This index was studied by Penrose (1946), Banzhaf (1965) and Coleman (1971). To calculate the
Banzhaf index, one first enumerates all winning (i.e., with at least 50% of the firm’s shares) coalitions of
shareholders where there is (at least) one swing shareholder (i.e., a shareholder who is in the coalition
and by leaving it would make the coalition fail to reach majority). Then, the Banzhaf power index of a
shareholder is the share of such coalitions where she is a swing shareholder.
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Definition 4. The following control power functions will be used throughout the paper.

(i) The proportional control power function is 𝛾𝑃
*𝑗(𝑠*𝑗) := 𝑠*𝑗 for every 𝑠*𝑗 ∈ Δ𝑛.

(ii) The Banzhaf control power function 𝛾𝐵
*𝑗 specifies that for every 𝑖 ∈ 𝑁 and 𝑠*𝑗 ∈ Δ𝑛

𝛾𝐵
𝑖𝑗 (𝑠*𝑗) :=

⃒⃒⃒{︁
𝑇 ∈ 2𝑁 :

∑︀
𝑘∈𝑇 𝑠𝑘𝑗 ≥ 1/2 >

∑︀
𝑘∈𝑇∖{𝑖} 𝑠𝑘𝑗

}︁⃒⃒⃒
∑︀

𝑡∈𝑁

⃒⃒⃒{︁
𝑇 ∈ 2𝑁 :

∑︀
𝑘∈𝑇 𝑠𝑘𝑗 ≥ 1/2 >

∑︀
𝑘∈𝑇∖{𝑡} 𝑠𝑘𝑗

}︁⃒⃒⃒ .
(iii) The modified Banzhaf control power function 𝛾𝑚𝐵

*𝑗 specifies that for every 𝑖 ∈ 𝑁

and 𝑠*𝑗 ∈ Δ𝑛

𝛾𝑚𝐵
𝑖𝑗 (𝑠*𝑗) :=

⎧⎪⎪⎨⎪⎪⎩
𝛾𝐵
𝑖𝑗 (𝑠*𝑗)/𝑠𝑖𝑗∑︀

𝑡∈𝑁𝑗(𝛾
𝐵
*𝑗)

𝛾𝐵
𝑡𝑗(𝑠*𝑗)/𝑠𝑡𝑗

if 𝛾𝐵
𝑖𝑗 (𝑠*𝑗) > 0

0 if 𝛾𝐵
𝑖𝑗 (𝑠*𝑗) = 0,

where 𝑁𝑗(𝛾
𝐵
*𝑗) :=

{︀
𝑖 ∈ 𝑁 : 𝛾𝐵

𝑖𝑗 (𝑠*𝑗) > 0
}︀
.

(iv) For every 𝜃 ≥ 0, the single-parameter–𝜃 control power function 𝛾𝑠𝑝−𝜃
*𝑗 specifies that

for every 𝑖 ∈ 𝑁 and 𝑠*𝑗 ∈ Δ𝑛

𝛾𝑠𝑝−𝜃
𝑖𝑗 (𝑠*𝑗) :=

⎧⎪⎨⎪⎩
𝑠𝜃𝑖𝑗∑︀

𝑡∈𝑁𝑗(𝑠*𝑗)
𝑠𝜃𝑡𝑗

if 𝑠𝑖𝑗 > 0

0 if 𝑠𝑖𝑗 = 0.

For 𝜃 = 1, 𝛾𝑠𝑝−1
*𝑗 = 𝛾𝑃

*𝑗. For 𝜃 = 0, 𝛾𝑠𝑝−0
𝑖𝑗 (𝑠*𝑗) = |𝑁𝑗(𝑠*𝑗)|−1 for every shareholder 𝑖 of

firm 𝑗, that is, the firm maximizes the unweighted average of its shareholders’ portfolio

profits.

If all shares have voting rights, Brito et al.’s (2023) voting model gives rise to four

specifications of 𝛾*𝑗 in the WAPP model, which are presented in Table 1. In their model,

when the profit relevance of shareholder bias parameter is equal to 1, the authors frame

the corporate control mechanism as—what I term—a weighted average profit weight

(WAPW) mechanism.

To describe the WAPW mechanism, we first need to define the following.
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Table 1: 𝛾*𝑗 under alternative assumptions in Brito et al. (2023)

Assumptions in
Brito et al. (2023)

Profit relevance of shareholder
bias in Brito et al. (2023)

𝛾*𝑗

1, 2, 4, 5 and 7
0 𝛾𝑃

*𝑗
1 𝛾𝑠𝑝−0

*𝑗

1, 3, 4, 5, 6 and 7
0 𝛾𝐵

*𝑗
1 𝛾𝑚𝐵

*𝑗

Definition 5. For every shareholder 𝑖 ∈ 𝑁𝑗(𝑠*𝑗) of firm 𝑗

𝜆𝑖;𝑗* ≡
(︁
𝜆𝑖;𝑗1 𝜆𝑖;𝑗2 · · · 𝜆𝑖;𝑗𝑚

)︁
:=

1

𝑠𝑖𝑗
𝑠𝑖* ≡

(︁
𝑠𝑖1/𝑠𝑖𝑗 𝑠𝑖2/𝑠𝑖𝑗 · · · 𝑠𝑖𝑚/𝑠𝑖𝑗

)︁
is the vector of weights 𝑖 places on firms’ profits with the weight to firm 𝑗 normalized to

1, where 𝜆𝑖;𝑗𝑘 ≡ 𝑠𝑖𝑘/𝑠𝑖𝑗 is the weight she places on firm 𝑘’s profit.

Definition 6. Firm 𝑗’s corporate control mechanism 𝑔𝑗 is a weighted average profit weight

(WAPW) if there exists a control power function ̂︀𝛾*𝑗 : Δ𝑛 → Δ𝑛 such that for every 𝑠 ∈ 𝑆

and 𝛼−𝑗 ∈ ×𝑘 ̸=𝑗Δ(𝐴−𝑘)

(i) (weighted sum of firm profit maximization with weighted average profit weights)

𝑔𝑗 (𝛼−𝑗,𝑠) = WAPŴ︀𝛾*𝑗 (𝛼−𝑗,𝑠)

:= argmax
𝛼𝑗∈Δ(𝐴𝑗)

⎧⎨⎩𝜋𝑗(𝛼𝑗, 𝛼−𝑗) +
∑︁

𝑘∈𝑀∖{𝑗}

⎛⎝ ∑︁
𝑖∈𝑁𝑗(𝛾*𝑗)

̂︀𝛾𝑖𝑗(𝑠*𝑗)𝜆𝑖;𝑗𝑘

⎞⎠ 𝜋𝑘(𝛼𝑗, 𝛼−𝑗)

⎫⎬⎭ ,

where 𝑁𝑗(𝛾*𝑗) ≡ {𝑖 ∈ 𝑁 : ̂︀𝛾𝑖𝑗(𝑠*𝑗) > 0},

(ii) (control exclusive to shareholders) for every 𝑖 ∈ 𝑁 , 𝑠𝑖𝑗 = 0 =⇒ ̂︀𝛾𝑖𝑗(𝑠*𝑗) = 0.

In WAPW, the weight that the manager of firm 𝑗 places on firm 𝑘’s profit is a weighted

average of the weights {𝜆𝑖;𝑗𝑘}𝑖∈𝑁𝑗(𝑠*𝑗) that the shareholders of firm 𝑗 would want firm 𝑗 to

use. This still is a WAPP mechanism, since it can be written as

WAPŴ︀𝛾*𝑗 (𝛼−𝑗,𝑠) = argmax
𝛼𝑗∈Δ(𝐴𝑗)

⎧⎨⎩ ∑︁
𝑖∈𝑁𝑗(̂︀𝛾*𝑗)

𝛾𝑖𝑗(𝑠*𝑗)𝑢𝑖(𝛼𝑗, 𝛼−𝑗, 𝑠𝑖*)

⎫⎬⎭ ,
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where for every shareholder 𝑖 of firm 𝑗

𝛾𝑖𝑗(𝑠*𝑗) :=
̂︀𝛾𝑖𝑗(𝑠*𝑗)/𝑠𝑖𝑗∑︀

𝑖∈𝑁𝑗(̂︀𝛾*𝑗) ̂︀𝛾𝑖𝑗(𝑠*𝑗)/𝑠𝑖𝑗 .
Thus, a mechanism is WAPP if and only if it is WAPW. The novelty is that the WAPW

parametrizations considered in Brito et al. (2023) give rise to 𝛾’s that are not standard in

the literature, namely 𝛾𝑠𝑝−0, which is derived from proportional ̂︀𝛾’s, and 𝛾𝑚𝐵, which is

derived from Banzhaf ̂︀𝛾’s.
3.1.2 The Nash bargaining (NB) mechanism

I now describe the Nash bargaining (NB) corporate control mechanism.15

Definition 7. Firm 𝑗’s corporate control mechanism 𝑔𝑗 is a Nash bargaining mechanism if

there exist a bargaining power function 𝛽*𝑗 : Δ
𝑛 → Δ𝑛 and a disagreement payoff function

𝑑*𝑗 : ×𝑘 ̸=𝑗Δ(𝐴𝑘)× 𝑆 → R𝑛 such that for every 𝑠 ∈ 𝑆 and 𝛼−𝑗 ∈ ×𝑘 ̸=𝑗Δ(𝐴−𝑘)

(i) (disagreement payoff feasibility) there exists 𝛼𝑗 ∈ Δ(𝐴𝑗) such that 𝑑*𝑗(𝛼𝑗,𝛼−𝑗,𝑠) ≤

𝑢 (𝛼𝑗,𝛼−𝑗,𝑠),
16

(ii) (Nash product maximization)

𝑔𝑗 (𝛼−𝑗,𝑠) = NB𝛽*𝑗 ,𝑑*𝑗 (𝛼−𝑗,𝑠)

:= argmax
𝛼𝑗∈𝐵𝑗(𝑎−𝑗 ,𝑠)

⎧⎨⎩ ∏︁
𝑖∈𝑁𝑗(𝛽*𝑗)

(𝑢𝑖 (𝛼𝑗,𝛼−𝑗,𝑠𝑖*)− 𝑑𝑖𝑗(𝛼−𝑗,𝑠))
𝛽𝑖𝑗(𝑠*𝑗)

⎫⎬⎭ ,

where 𝐵𝑗(𝛼−𝑗,𝑠) := {𝛼𝑗 ∈ Δ(𝐴𝑗) : 𝑢𝑖(𝛼𝑗,𝛼−𝑗,𝑠𝑖*) ≥ 𝑑𝑖𝑗(𝛼−𝑗,𝑠)∀𝑖 ∈ 𝑁𝑗(𝛽*𝑗)} and

𝑁𝑗(𝛽*𝑗) ≡ {𝑖 ∈ 𝑁 : 𝛽𝑖𝑗(𝑠*𝑗) > 0},17

(iii) (control exclusive to shareholders) for every 𝑖 ∈ 𝑁 , 𝑠𝑖𝑗 = 0 =⇒ 𝛽𝑖𝑗(𝑠*𝑗) = 0.

Also, when firm 𝑗’s mechanism is NB, an investor is called a controlling shareholder of

firm 𝑗 (at 𝑠*𝑗) if 𝛽𝑖𝑗(𝑠*𝑗) > 0.

15It is a maintained assumption that both mechanisms, WAPP and NB, are well-defined. Lemma 3 in
the Appendix provides conditions for that to be the case under NB in a homogeneous product Cournot
market.

16Given two vectors 𝑥,𝑦, 𝑥 ≥ 𝑦 means 𝑥𝑖 ≥ 𝑦𝑖 for every 𝑖, 𝑥 > 𝑦 means 𝑥𝑖 ≥ 𝑦𝑖 for every 𝑖 with at
least one inequality strict, while 𝑥 ≫ 𝑦 means 𝑥𝑖 > (<)𝑦𝑖 for every 𝑖; the relations ≤, <,≪ are defined
analogously.

17I write 𝑁𝑗(𝛽*𝑗) instead of 𝑁𝑗(𝛽*𝑗(𝑠*𝑗)) to economize on notation.
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Analogously to the WAPP mechanism, 𝛽*𝑗 does not depend on 𝜋. However—although

I suppress the dependence of mechanisms on profit functions to economize on notation—it

is natural for 𝑑*𝑗 to depend on 𝜋, as it refers to payoffs. The disagreement payoffs

depend also on the other firms’ actions, since firm 𝑗’s course of action (with or without

disagreement) will depend on the choices of the other firms.18

The random dictatorship disagreement payoff function I now propose the random

dictatorship specification for disagreement payoffs, which poses that in case of disagreement

in a firm, the shareholders’ payoffs are derived from random dictatorship. With some

exogenous probability each shareholder of the firm is chosen to implement her most

preferred policy.

Definition 8. The disagreement payoff function 𝑑*𝑗 is a random dictatorship (RD)

disagreement payoff function if there exist a lottery weight function 𝛿*𝑗 : Δ
𝑛 → Δ𝑛 and a

choice function (in case of disagreement) 𝛼𝑑
𝑗 : ×𝑘 ̸=𝑗Δ(𝐴𝑘)× {𝑣 ∈ R𝑚

+ : 𝑣𝑗 = 1} → Δ(𝐴𝑗)

such that

(i) (the choice function 𝛼𝑑
𝑗 for firm 𝑗 is a selection from the correspondence that takes as

arguments the other firms’ actions 𝛼−𝑗 and a vector 𝑣 of relative weights on firms’

profits (with the weight on firm 𝑗’s profit normalized to 1) and returns the firm 𝑗

action(s) that maximize the payoff of a shareholder with relative holdings 𝑣 in the

firms) for every 𝑣 ∈ {𝑣′ ∈ R𝑚
+ : 𝑣′𝑗 = 1}19

𝛼𝑑
𝑗 (𝛼−𝑗,𝑣) ∈ argmax

𝛼𝑗∈Δ(𝐴𝑗)

∑︁
𝑗∈𝑀

𝑣𝑗𝜋𝑗(𝛼𝑗,𝛼−𝑗),

and for every 𝑠 ∈ 𝑆 and 𝛼−𝑗 ∈ ×𝑘 ̸=𝑗Δ(𝐴𝑘)

18For example, consider the following cases. If the other firms choose actions that drive the price
lower than firm 𝑗’s marginal cost, then there is essentially no disagreement and 𝑑*𝑗 will reflect that the
firm should not produce at all. On the other hand, if the other firms keep the price well above firm 𝑗’s
marginal cost, it is natural that in case of disagreement some level of production will take place in firm 𝑗.

19Notice that the choice function 𝛼𝑑
𝑗 (𝛼−𝑗 , 𝑣𝑗) does not depend on the absolute size of a share-

holder’s stakes in the firms but only on her relative holdings 𝑣. This makes sense because
argmax𝛼𝑗∈Δ(𝐴𝑗)

∑︀
𝑗∈𝑀 𝑣𝑗𝜋𝑗(𝛼𝑗 ,𝛼−𝑗) does not change if the objective function is multiplied by a positive

constant. Also, notice that the choice function is not shareholder-specific. That is, all shareholders with
the same relative holdings 𝑣 choose the same action to be implemented by firm 𝑗 in case of disagreement
(if they are chosen by the lottery to make a decision). Of course, both of these properties are automatically
satisfied when argmax𝛼𝑗∈Δ(𝐴𝑗)

∑︀
𝑗∈𝑀 𝑣𝑗𝜋𝑗(𝛼𝑗 ,𝛼−𝑗) is a singleton.
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(ii) (disagreement payoffs derived from random dictatorship)

𝑑*𝑗(𝛼−𝑗,𝑠) =
∑︁

𝑖∈𝑁𝑗(𝛿*𝑗)

𝛿𝑖𝑗(𝑠*𝑗)𝑢
(︀
𝛼𝑑
𝑗 (𝛼−𝑗,𝜆𝑖;𝑗*) ,𝛼−𝑗,𝑠

)︀
,

where 𝑁𝑗(𝛿*𝑗) ≡ {𝑖 ∈ 𝑁 : 𝛿𝑖𝑗(𝑠*𝑗) > 0} and 𝜆𝑖;𝑗* ≡ 𝑠𝑖*/𝑠𝑖𝑗,

(iii) (control exclusive to shareholders) for every 𝑖 ∈ 𝑁 , 𝑠𝑖𝑗 = 0 =⇒ 𝛿𝑖𝑗(𝑠*𝑗) = 0.

Definition 9. The proportional bargaining power and lottery weight functions are

𝛽𝑃
*𝑗(𝑠*𝑗), 𝛿

𝑃
*𝑗(𝑠*𝑗) := 𝑠*𝑗.

RD disagreement payoffs have certain desirable properties. First, the disagreement

payoffs are derived from a well-specified procedure. Second, they are feasible without the

need for (free) disposal of profits. Third, through the probabilities 𝛿 with which different

shareholders get to implement their most preferred action, the RD disagreement payoffs

account for the relative power of shareholders.

Fourth, consider the case where 𝐴𝑗 is a convex subset of a Euclidean space, and the

portfolio profit of each firm 𝑗 controlling shareholder is strictly concave in 𝑗’s (pure)

action 𝑎𝑗.
20 If firm 𝑗’s controlling shareholders’ preferences are not perfectly aligned,21

then the shareholders have strict incentives to reach an agreement. Namely, by Jensen’s

inequality, every controlling shareholder will strictly prefer (to disagreement) that the firm

implement the pure action that is the convex combination of the controlling shareholders’

most-preferred actions,22 so that the solution to the Nash bargaining problem is interior.

Last, while the NB mechanism can—much like the WAPP mechanism—be thought of

as an as-if assumption, NB with RD disagreement payoffs (NBRD) also has connections

to strategic foundations of Nash bargaining. For example, Howard (1992) shows that

symmetric NBRD can be implemented as the unique perfect equilibrium outcome of a

game.

20Lemma 2 in the Appendix provides sufficient conditions for strict concavity in a homogeneous product
Cournot market.

21That is, there exist distinct 𝑖,𝑖′ ∈ 𝑁 such that 𝛿𝑖𝑗(𝑠*𝑗),𝛿𝑖′𝑗(𝑠*𝑗) > 0 and 𝛼𝑑
𝑗 (𝛼−𝑗 ,𝜆𝑖;𝑗*) ̸=

𝛼𝑑
𝑗 (𝛼−𝑗 ,𝜆𝑖′;𝑗*), which are singletons and pure actions by strict concavity. When firm 𝑗’s controlling

shareholders’ preferences are perfectly aligned, then in case of disagreement, the action that is most
preferred by all of them is chosen.

22That is, 𝑢𝑖

(︁∑︀
𝑖∈𝑁𝑗(𝛽*𝑗)

𝛿𝑖𝑗(𝑠*𝑗)𝛼
𝑑
𝑗 (𝛼−𝑗 ,𝜆𝑖;𝑗*) ,𝛼−𝑗 , 𝑠𝑖*

)︁
> 𝑑𝑖(𝛼−𝑗 ,𝑠) for every 𝑖 ∈ 𝑁𝑗(𝛽*𝑗).
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3.2 Equilibrium definition and existence

I now present the equilibrium concept and prove the existence of a Nash equilibrium in

Nash bargains.

Definition 10. Fix an 𝑠 ∈ 𝑆. An action profile 𝛼 ∈ ×𝑗∈𝑀Δ(𝐴𝑗) is an equilibrium under

corporate control mechanisms (𝑔𝑗)𝑗∈𝑀 if for every 𝑗 ∈ 𝑀 , 𝛼𝑗 ∈ 𝑔𝑗 (𝛼−𝑗,𝑠).

Under NB, the equilibrium is a Nash equilibrium in Nash bargains. Particularly, the

oligopoly game can be seen as a generalized game where a firm’s action set depends on the

other firms’ actions. Namely, when the other firms play 𝛼−𝑗, firm 𝑗 can choose an action

in 𝐵𝑗(𝛼−𝑗,𝑠), because it needs to make sure that each controlling shareholder achieves at

least her disagreement payoff. Proposition 1 provides sufficient conditions for existence of

a pure equilibrium of this generalized game.

Proposition 1. Fix an 𝑠 ∈ 𝑆. For each firm 𝑗 ∈ 𝑀 let the corporate control mechanism

𝑔𝑗 be NB𝛽*𝑗 ,𝑑*𝑗 . If for every 𝑗 ∈ 𝑀

(i) 𝐴𝑗 is a non-empty, compact and convex subset of a Euclidean space,

(ii) 𝜋𝑗(𝑎) is continuous in 𝑎,

(iii) for each 𝑖 ∈ 𝑁 , 𝑑𝑖𝑗(𝑎−𝑗,𝑠) is continuous in 𝑎−𝑗,

(iv) 𝐵𝑃
𝑗 (𝑎−𝑗) is lower hemicontinuous in 𝑎−𝑗 over 𝑎−𝑗 ∈ ̃︀𝐴−𝑗,

23

(v) 𝜋𝑗(𝑎𝑗,𝑎−𝑗) is concave in 𝑎𝑗 for every 𝑎−𝑗 ∈ 𝐴−𝑗,
24

where 𝐵𝑃
𝑗 (𝑎−𝑗) := {𝑎𝑗 ∈ 𝐴𝑗 : 𝑢𝑖 (𝑎𝑗,𝑎−𝑗,𝑠𝑖*) ≥ 𝑑𝑖𝑗(𝑎−𝑗,𝑠) ∀𝑖 ∈ 𝑁𝑗(𝛽*𝑗)} and ̃︀𝐴 := {𝑎 ∈ 𝐴 :

𝑎𝑘 ∈ 𝐵𝑃
𝑘 (𝑎−𝑗) ∀𝑘 ∈ 𝑀}. Then, a pure Nash equilibrium in Nash bargains exists.

4 A comparison of NB and WAPP

This section characterizes NB mechanisms and compares them with WAPP.

23Lemma 1 in the Appendix provides sufficient conditions for condition (iv) to hold.
24Assumption (v) guarantees that the Nash product is quasi-concave in 𝑎𝑗 .
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4.1 A characterization of NB mechanisms

For every firm 𝑗 ∈ 𝑀 , 𝑠 ∈ 𝑆 and 𝛼−𝑗 ∈ ×𝑘 ̸=𝑗Δ(𝐴−𝑘) define 𝒰𝑗 (𝛼−𝑗, 𝑠) := {𝑥 ∈ R𝑛 : ∃𝛼𝑗 ∈

Δ(𝐴𝑗) such that 𝑢 (𝛼𝑗,𝛼−𝑗, 𝑠) = 𝑥}, the portfolio profit possibility set given the actions

of the other firms. 𝒰𝑗 (𝛼−𝑗, 𝑠) is convex since Δ(𝐴𝑗) is. I strengthen this by assuming

that 𝒰𝑗 (𝛼−𝑗, 𝑠) is strictly convex for every 𝑠 ∈ 𝑆 and 𝛼−𝑗 ∈ ×𝑘 ̸=𝑗Δ(𝐴𝑘). Strict convexity

guarantees that firm 𝑗’s corporate control mechanism is regular in the following sense.25

Definition 11. Firm 𝑗’s corporate control mechanism 𝑔𝑗 is regular if for every 𝑠 ∈ 𝑆 and

𝛼−𝑗 ∈ ×𝑘 ̸=𝑗Δ(𝐴−𝑘) and every 𝛼𝑗,𝛼
′
𝑗 ∈ 𝑔𝑗(𝛼−𝑗,𝑠), 𝑢 (𝛼𝑗,𝛼−𝑗,𝑠) = 𝑢

(︀
𝛼′
𝑗,𝛼−𝑗,𝑠

)︀
.

Regularity requires that a firm’s best response is unique up to payoff-equivalent actions.

This can be seen as an inherent consistency property of the corporate control mechanism.

It implies that firm’s shareholders are not willing to agree to two different policies when

one of the two policies is strictly preferred to the other by at least one shareholder.

I now define efficient mechanisms.

Definition 12. The corporate control mechanism 𝑔𝑗 of firm 𝑗 is efficient if there exists

function ̃︀𝑁 : Δ𝑛 → 𝑁 such that for every 𝑠 ∈ 𝑆,

(i) (a nonempty set of investors control the firm) ̃︀𝑁(𝑠*𝑗) ̸= ∅,

(ii) (only the firm’s shareholders may control the firm) for every 𝑖 ∈ 𝑁 , 𝑠𝑖𝑗 = 0 =⇒ 𝑖 ̸∈̃︀𝑁(𝑠*𝑗),

(iii) (the firm is efficiently controlled) for every 𝛼−𝑗 ∈ ×𝑘 ̸=𝑗Δ(𝐴−𝑘), there do not exist

𝛼𝑗 ∈ 𝑔𝑗 (𝛼−𝑗,𝑠) and 𝛼′
𝑗 ∈ Δ(𝐴𝑗) such that 𝑢𝑖(𝛼

′
𝑗,𝛼−𝑗,𝑠𝑖*) ≥ 𝑢𝑖 (𝛼𝑗,𝛼−𝑗,𝑠𝑖*) for all

𝑖 ∈ ̃︀𝑁(𝑠*𝑗) with at least one strict inequality,

(iv) (controlling shareholders only care about firm 𝑗’s action so long as it affects their

portfolio profits) there do not exist 𝛼𝑗 ∈ 𝑔𝑗 (𝛼−𝑗,𝑠) and 𝛼′
𝑗 ∈ Δ(𝐴𝑗) ∖ 𝑔𝑗 (𝛼−𝑗,𝑠) such

that 𝑢𝑖(𝛼𝑗,𝛼−𝑗,𝑠𝑖*) = 𝑢𝑖

(︀
𝛼′
𝑗,𝛼−𝑗,𝑠𝑖*

)︀
for all 𝑖 ∈ ̃︀𝑁(𝑠*𝑗).

A corporate control mechanism is efficient if under any ownership structure there is a

subset ̃︀𝑁(𝑠*𝑗) of the shareholders of firm 𝑗 that collectively and efficiently control the firm

25For 𝑠 ∈ 𝑆 and 𝛼−𝑗 ∈ ×𝑘 ̸=𝑗Δ(𝐴−𝑘) such that there exists 𝑢 ∈ 𝒰𝑗 (𝛼−𝑗 , 𝑠) satisfying 𝑢 ≫ 𝑑*𝑗 , NB is
regular without strict convexity of 𝒰𝑗 (𝛼−𝑗 , 𝑠) being necessary, provided that the Nash product is strictly
quasiconcave in 𝑢.
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𝑗. These controlling shareholders never choose actions for firm 𝑗 that are (weakly) Pareto

dominated in the sense that another action could do at least as well for all the controlling

shareholders and strictly better for at least one of them. Also, if they are willing to select

a certain (efficient) action 𝛼𝑗 for firm 𝑗, then they are also willing to choose any other

action that delivers the same payoff to each of the controlling shareholders as 𝛼𝑗 does.

Proposition 2 then characterizes NB mechanisms.

Proposition 2. Let firm 𝑗’s corporate control mechanism be 𝑔𝑗.

(i) If 𝑔𝑗 is WAPP, then it is regular and efficient.

(ii) 𝑔𝑗 is regular and efficient if and only if it is NB.

Limiting attention to NB mechanisms amounts to considering all efficient and regular

mechanisms, which is a superset of WAPP mechanisms.26 Of course, efficiency is a minimal

condition and there are additional desirable properties. Subsection 4.3 will argue that

using NBRD is a way to proceed that overcomes the shortcomings of WAPP mechanisms.

4.2 First order conditions and the endogeneity of control weights

For notational simplicity, assume corporate control mechanisms prescribe a single (pure)

action. If 𝐴𝑗 is a convex subset of a Euclidean space with WAPP𝛾*𝑗 pinned down by the

first order condition (FOC), then

∑︁
𝑖∈𝑁

𝛾𝑖𝑗(𝑠*𝑗)
𝜕𝑢𝑖(𝑎𝑗,𝑎−𝑗,𝑠𝑖*)

𝜕𝑎𝑗

⃒⃒⃒⃒
𝑎𝑗=WAPP𝛾*𝑗 (𝑎−𝑗 ,𝑠)

= 0,

where 𝜕𝑢𝑖(𝑎𝑗,𝑎−𝑗,𝑠𝑖*)/𝜕𝑎𝑗 denotes the gradient with respect to 𝑎𝑗, or equivalently

𝜕𝜋𝑗(𝑎𝑗,𝑎−𝑗)

𝜕𝑎𝑗

⃒⃒⃒⃒
𝑎𝑗=WAPP𝛾*𝑗 (𝑎−𝑗 ,𝑠)

+
∑︁

𝑘∈𝑀∖{𝑗}

𝜆𝑗𝑘(𝑠)
𝜕𝜋𝑘(𝑎𝑗,𝑎−𝑗)

𝜕𝑎𝑗

⃒⃒⃒⃒
𝑎𝑗=WAPP𝛾*𝑗 (𝑎−𝑗 ,𝑠)

= 0.

An analogous FOC holds for NB𝛽*𝑗 ,𝑑*𝑗 . When 𝑢𝑖(NB𝛽*𝑗 ,𝑑*𝑗(𝑎−𝑗,𝑠),𝑎−𝑗,𝑠𝑖*) > 𝑑𝑖𝑗(𝑎−𝑗,𝑠)

for every 𝑖 ∈ 𝑁𝑗(𝛽*𝑗), define the (normalized, unit-free) disagreement-adjusted bargaining

26Regularity is needed because there are efficient—but not regular—mechanisms that prescribe multiple
actions (i.e., |𝑔𝑗(𝛼−𝑗 ,𝑠)| > 1 for some (𝛼−𝑗 ,𝑠)) which are not all maximizers of the same Nash product.
In other words, a Nash product picks a single point on the Pareto frontier, while an efficient—but not
regular—mechanism can pick any subset of the frontier.
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power of investor 𝑖 over firm 𝑗 to be given by

̃︀𝛾𝑖𝑗(𝛼−𝑗,𝑠) :=

𝛽𝑖𝑗(𝑠*𝑗)

𝑢𝑖(NB𝛽*𝑗 ,𝑑*𝑗 (𝛼−𝑗 ,𝑠),𝛼−𝑗 ,𝑠𝑖*)−𝑑𝑖𝑗(𝛼−𝑗 ,𝑠)∑︀
𝑘∈𝑁𝑗(𝛽*𝑗)

𝛽𝑘𝑗(𝑠)

𝑢𝑘(NB𝛽*𝑗 ,𝑑*𝑗 (𝛼−𝑗 ,𝑠),𝛼−𝑗 ,𝑠𝑘*)−𝑑𝑘𝑗(𝛼−𝑗 ,𝑠)

.

̃︀𝛾𝑖𝑗(𝛼−𝑗,𝑠) accounts for the concavity of the Nash product in 𝑢𝑖 (𝛼𝑗,𝛼−𝑗,𝑠𝑖*). It measures

shareholder control accounting for the fact that the further 𝑢𝑖 (𝛼𝑗,𝛼−𝑗,𝑠𝑖*) is from 𝑑𝑖𝑗(𝛼−𝑗,𝑠),

the more investor 𝑖 has to lose in case of disagreement, which compromises her bargaining

power. The FOC then reads

∑︁
𝑖∈𝑁𝑗(𝛽*𝑗)

̃︀𝛾𝑖𝑗(𝑎−𝑗,𝑠)
𝜕𝑢𝑖(𝑎𝑗,𝑎−𝑗,𝑠𝑖*)

𝜕𝑎𝑗

⃒⃒⃒⃒
𝑎𝑗=NB𝛽*𝑗 ,𝑑*𝑗 (𝑎−𝑗 ,𝑠)

= 0,

or equivalently

𝜕𝜋𝑗(𝑎𝑗,𝑎−𝑗)

𝜕𝑎𝑗

⃒⃒⃒⃒
𝑎𝑗=NB𝛽*𝑗 ,𝑑*𝑗 (𝑎−𝑗 ,𝑠)

+
∑︁

𝑘∈𝑀∖{𝑗}

̃︀𝜆𝑗𝑘(𝛼−𝑗,𝑠)
𝜕𝜋𝑘(𝑎𝑗,𝑎−𝑗)

𝜕𝑎𝑗

⃒⃒⃒⃒
𝑎𝑗=NB𝛽*𝑗 ,𝑑*𝑗 (𝑎−𝑗 ,𝑠)

= 0,

where ̃︀𝜆𝑗𝑘(𝑎−𝑗,𝑠) :=
∑︀

𝑖∈𝑁𝑗(𝛽*𝑗)
̃︀𝛾𝑖𝑗(𝑎−𝑗,𝑠)𝑠𝑖𝑘/

∑︀
𝑖∈𝑁𝑗(𝛽*𝑗)

̃︀𝛾𝑖𝑗(𝑎−𝑗,𝑠)𝑠𝑖𝑗 is the weight firm 𝑗

locally places on firm 𝑘’s profit.

A few comments are in place. In the WAPP mechanism, the control weights, 𝛾*𝑗, do

not depend on 𝜋 or 𝛼−𝑗.
27 Indeed, a natural and simple way in which 𝛾*𝑗 can depend on

either seems hard to find within the context of WAPP. On the other hand, NB provides

us with a richer language than WAPP. The control power of each shareholder can depend

(through 𝑑*𝑗) on both market conditions (i.e., 𝜋), such as demand market demand and

technology, and the other firms’ actions.

Nevertheless, one should be cautious in interpreting ̃︀𝛾 as control weights. Although

both 𝛾𝑖𝑗 and ̃︀𝛾𝑖𝑗 capture how strongly firm 𝑗’s behavior will adapt to accommodate changes

in the preferences of shareholder 𝑖 (e.g., due to a stock trade performed by shareholder

𝑖), ̃︀𝛾𝑖𝑗 is only valid for local changes in preferences. Thus, while 𝛾𝑖𝑗 could be seen as a

measure how strongly shareholder 𝑖’s interests are represented in firm 𝑗’s action, this is

not true of ̃︀𝛾𝑖𝑗. For example, if 𝑖 exercises a lot of control over firm 𝑗 (e.g., 𝛽𝑖𝑗 high), this

can translate into a disproportionately high 𝑢𝑖 − 𝑑𝑖𝑗 (compared to that of shareholders

27To the best of my knowledge, the possibility of such dependence has not been considered in the
literature.
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with less control over firm 𝑗), which tends to decrease ̃︀𝛾𝑖𝑗.28
Last, even though NB is more general than WAPP, the two obtain a similar charac-

terization of an interior equilibrium. Thus, comparative statics under NB will also be

valid under WAPP with the only difference that the corresponding WAPP control weights

should be used. Of course, this comes with a loss in tractability due to the endogeneity of

control weights under NB.

4.3 WAPP versus NBRD: ownership dispersion, theoretical predictions and

policy implications

This section compares WAPP and NBRD. First, it shows that NBRD is more flexible

than WAPP in accounting for ownership dispersion. Second, it shows that the two models

can give rise to significantly different theoretical predictions and policy implications.

4.3.1 Ownership dispersion and modeling proportional control

I now define ownership structure rearrangements, which will be used in a behavioral

definition of proportional control.

Definition 13. For every 𝑣 ∈
{︀
𝑤 ∈ R𝑚

+ : 𝑤𝑗 = 1
}︀
and 𝑠 ∈ 𝑆 define

𝑝𝑗(𝑣,𝑠) :=
∑︁

𝑖∈{𝑖′∈𝑁𝑗(𝑠*𝑗):𝜆𝑖′;𝑗*=𝑣}
𝑠𝑖𝑗,

the total amount of shares held in firm 𝑗 by shareholders that place weights 𝑣 to the firms’

profits (with the weight to firm 𝑗’s profit normalized to 1). For any 𝑠,𝑠′ ∈ 𝑆 we say that 𝑠′

is a rearrangement of 𝑠 for firm 𝑗 if for every 𝑣 ∈
{︀
𝑤 ∈ R𝑚

+ : 𝑤𝑗 = 1
}︀
, 𝑝𝑗(𝑣,𝑠

′) = 𝑝𝑗(𝑣,𝑠).

𝑝𝑗(𝑣,𝑠) is the proportion of firm 𝑗 shareholders that assign weights 𝑣 to the firms’

profits. The following definition describes proportional control using 𝑝𝑗(𝑣,𝑠).

Definition 14. Firm 𝑗’s corporate control mechanism 𝑔𝑗 exhibits proportional control if

for every 𝛼−𝑗 ∈ ×𝑘 ̸=𝑗Δ(𝐴𝑘) and for every 𝑠,𝑠′ ∈ 𝑆 such that 𝑠′ is a rearrangement of 𝑠 for

firm 𝑗, 𝑔𝑗 (𝛼−𝑗,𝑠
′) = 𝑔𝑗 (𝛼−𝑗,𝑠).

28A similar comment applies to ̃︀𝜆𝑗𝑘(𝛼−𝑗 ,𝑠) and 𝜆𝑗𝑘(𝑠). Although both ̃︀𝜆𝑗𝑘(𝛼−𝑗 ,𝑠) and 𝜆𝑗𝑘(𝑠) capture

how much firm 𝑗 cares about the effect it has on firm 𝑘’s profit, ̃︀𝜆𝑗𝑘(𝛼−𝑗 ,𝑠) is only valid locally.
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This definition says that control of a firm is proportional when for any possible vector

𝑣 of weights that the firm may assign to all firms’ profits, only the proportion 𝑝𝑗(𝑣,𝑠) of

shareholders corresponding to weight vector 𝑣 matters for firm conduct. Thus, for example

“splitting” a shareholder into two shareholders—so that each of the two shareholders has

half of the shares that the initial shareholder had in each firm—does not change firm

conduct.

Proposition 3. Firm 𝑗’s corporate control mechanism 𝑔𝑗 exhibits proportional control if

it is (i) NBRD with proportional bargaining power and lottery weight functions 𝛽*𝑗 = 𝛽𝑃
*𝑗

and 𝛿*𝑗 = 𝛿𝑃*𝑗, or (ii) WAPP with 𝛾*𝑗 = 𝛾𝑠𝑝−0
*𝑗 (i.e., firm 𝑗 maximizes the unweighted

average of its shareholders’ portfolio profits).

Under NB, the proportional control assumptions on 𝛽*𝑗 and 𝛿*𝑗 indeed correspond

to the behavioral definition of proportional control. On the other hand, this is not the

case with WAPP for 𝛾𝑠𝑝−𝜃
*𝑗 (including 𝜃 = 1, which corresponds to proportional 𝛾*𝑗) unless

𝜃 = 0. The WAPP mechanism by construction places an excessively high weight on the

importance of concentration or dispersion of shares across shareholders within a firm.

Brito et al. (2023) argue that the WAPW formulation copes better with ownership

dispersion than WAPP. Indeed, this is the case with their WAPW formulation that

leads to 𝛾𝑠𝑝−0, which however gives rise to an arguably even more important issue. It

specifies 𝛾𝑖𝑗(𝑠*𝑗) = |𝑁𝑗(𝑠*𝑗)|−1 for every shareholder 𝑖 of firm 𝑗, so that the firm maximizes

the unweighted average of its shareholders’ portfolio profits. This can be particularly

problematic, as under proportional ̂︀𝛾*𝑗 (which corresponds to 𝛾𝑠𝑝−0
*𝑗 ) firm 𝑗 assigns weight

∑︁
𝑖∈𝑁𝑗(̂︀𝛾*𝑗)

̂︀𝛾𝑖𝑗(𝑠*𝑗)𝜆𝑖;𝑗𝑘 =
∑︁

𝑖∈𝑁𝑗(̂︀𝛾*𝑗)
𝑠𝑖𝑗

𝑠𝑖𝑘
𝑠𝑖𝑗

=
∑︁

𝑖∈𝑁𝑗(̂︀𝛾*𝑗)
𝑠𝑖𝑘

to firm 𝑘’s profit, which is high. It is equal to 1 simply if firm 𝑘’s shareholders are a subset

of firm 𝑗’s shareholders (i.e., 𝑁𝑘(̂︀𝛾*𝑘) ⊆ 𝑁𝑗(̂︀𝛾*𝑗)). If every firm follows this mechanism

and every investor has some (however small or large) amount of shares in every firm in

the industry, then maximization of aggregate industry profits by the firms (with the firms

effectively acting as a multi-plant monopolist) will be an equilibrium. To see why this is

unrealistic, start from 𝑠 = 𝐼𝑛, where 𝐼𝑛 the identity matrix (i.e., each firm is owned by a

unique shareholder). If one then slightly perturbs 𝑠, so that each investor has some amount

of shares in each firm, the implication that firms will collectively act as a monopolist is
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unrealistic.29

More generally, the WAPW formulation can suffer from firm behavior being excessively

affected by the extreme preferences of some shareholders. As 𝑠𝑖𝑗 decreases, the control ̂︀𝛾𝑖𝑗
of shareholder 𝑖 decreases but at the same time the weight 𝜆𝑖;𝑗𝑘 that she wants firm 𝑗 to

assign to firm 𝑘’s profits increases at an increasing rate with lim𝑠𝑖𝑗↓0 𝜆𝑖;𝑗𝑘 = ∞.30

A duopoly example Consider a duopoly with the following symmetric ownership,

WAPP control power and NBRD bargaining power and lottery weight structures, (𝑠,𝛾,𝛽,𝛿).

Each firm has one common owner and (𝑛− 1)/2 non-common owners, where 𝑛 the total

number of investors. I study comparative statics with respect to 𝑛 and thus parametrize

objects by 𝑛 (e.g., write 𝛾(𝑛) instead of 𝛾(𝑠)).

𝑠(𝑛) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎 𝜎

2(1−𝜎)
𝑛−1

0
...

...

2(1−𝜎)
𝑛−1

0

0 2(1−𝜎)
𝑛−1

...
...

0 2(1−𝜎)
𝑛−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝛾(𝑛) = 𝛽(𝑛) = 𝛿(𝑛) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛾11(𝑛) 𝛾11(𝑛)

2(1−𝛾11(𝑛))
𝑛−1

0
...

...

2(1−𝛾11(𝑛))
𝑛−1

0

0 2(1−𝛾11(𝑛))
𝑛−1

...
...

0 2(1−𝛾11(𝑛))
𝑛−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since 𝛾(𝑛) = 𝛽(𝑛) = 𝛿(𝑛) I will use the 𝛾 notation also in NBRD. Claim 1 then studies

how firm behavior changes under WAPP as 𝑛 (and thus the dispersion of non-common

owners) increases.

Claim 1. Consider the duopoly as defined above with 𝜎, 𝛾11(𝑛) ∈ (0,1) for 𝑛 ∈ {3,5,7, . . . }.31

Let the firms’ corporate control mechanisms be 𝑔1 = WAPP𝛾*1(𝑛) and 𝑔2 = WAPP𝛾*2(𝑛).

(i) If we ignore the integer constraint on 𝑛 and differentiate 𝛾11(𝑛) with respect to 𝑛,

then 𝜆12(𝑛) = 𝜆21(𝑛) is increasing (resp. decreasing) in 𝑛 if and only if

𝜕𝛾11(𝑛)

𝜕𝑛

𝑛

𝛾11(𝑛)
+

2𝑛

𝑛− 1
(1− 𝛾11(𝑛))

(resp. <)
> 0.

29A similar perturbation can be made if we start from each firm being held by multiple (rather than a
single) non-common owners.

30As we will see next, the 𝛾𝑚𝐵 formulation does not satisfactorily handle ownership dispersion either,
and at the same time has other unappealing properties.

31If 𝛾11(𝑛) = 1 for some 𝑛, then trivially 𝜆12(𝑛) = 𝜆21(𝑛) = 1 for that 𝑛.
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(ii) If lim𝑛→∞ 𝑛𝛾11(𝑛) = ∞, then lim𝑛→∞ 𝜆12(𝑛) = lim𝑛→∞ 𝜆21(𝑛) = 1.

(iii) If the control weights are sp–𝜃, then 𝜆12(𝑛) = 𝜆21(𝑛) goes to 1 (resp. 𝜎) as 𝑛 → ∞

if 𝜃 > 0 (resp. 𝜃 = 0).

(iv) (Dubey and Shapley, 1979) Under Banzhaf control weights lim𝑛→∞ 𝛾𝐵
11(𝑛) = 1. Thus,

lim𝑛→∞ 𝜆12(𝑛) = lim𝑛→∞ 𝜆21(𝑛) = 1.

(v) If the control weights are modified Banzhaf, then lim𝑛→∞ 𝜆12(𝑛) = lim𝑛→∞ 𝜆21(𝑛) =

1.

(vi) When 𝜆12(𝑛) = 𝜆21(𝑛) = 1, each firm maximizes aggregate industry profits, so the

two-plant monopoly solution is an equilibrium.

Part (i) shows that even if the common owner’s share of control 𝛾11(𝑛) does not

increase with 𝑛, firms may internalize each other’s profits by more and more as 𝑛 increases.

Part (ii) examines the limiting case where non-common owners become very dispersed

(𝑛 → ∞). Unless 𝛾11(𝑛) goes to 0 at a rate of at least 1/𝑛, as 𝑛 → ∞ WAPP assigns all

control of both firms to the common owner giving rise to a two-plant monopoly (part

(vi)).32 No reasonable assumption on 𝛾’s can overcome this issue as seen in parts (iii)-(v).

This is because letting 𝛾11(𝑛) go to 0 (and fast) gives rise to other issues.33

Figure 1 plots the control power of investor 1, 𝛾11(𝑛), and the weight each firm assigns

to the other firm’s profit, 𝜆12(𝑛) = 𝜆21(𝑛), under alternative specifications of WAPP.

Apart from inadequately handling ownership dispersion, Banzhaf and modified Banzhaf

also generate unintuitive non-monotonicities in 𝛾11(𝑛) and 𝜆12(𝑛). 𝛾𝑠𝑝−𝜃 with 𝜃 < 1

dampens the unnatural effects of ownership dispersion under WAPP without giving rise

to non-monotonicities. In the limit as 𝑛 → ∞ only the unrealistic specification of 𝜃 = 0

combats the effects of ownership dispersion. However, if control is not proportional, it is

more natural to think of larger shareholders having more than proportional control (i.e.,

𝜃 > 1). This emphasizes the tension between the behavioral definition of proportional

control and the definition of proportional control in terms of parameters in the WAPP

model.

Claim 2 then studies how firm behavior changes under NBRD as 𝑛 increases.

32The two firms do not jointly maximize profits but rather each of them chooses its action to maximize
aggregate industry profits given the other firm’s action. Thus, although two-plant monopoly indeed is an
equilibrium, there may also be other equilibria (e.g., see Vives and Vravosinos, 2023).

33As we have seen, 𝛾𝑠𝑝−0 is unrealistic.
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Figure 1: Common owner control power and profit weights in a duopoly with WAPP and
varying non-common ownership dispersion

(a) Control power of common owner (b) Profit weight on other firm

Claim 2. Consider the duopoly as defined above with 𝜎 ∈ (0,1) and 𝑛 ∈ {3,5,7, . . . }. Let

the firms’ corporate control mechanisms be 𝑔1 = NB𝛽*1(𝑛),𝑑*1(𝑛) and 𝑔2 = NB𝛽*2(𝑛),𝑑*2(𝑛)

with 𝑑*1(𝑛) and 𝑑*2(𝑛) RD with lottery weights 𝛿*1(𝑛) and 𝛿*2(𝑛), respectively.

(i) If lim𝑛→∞ 𝛾11(𝑛) = 1 (resp. 0), then as 𝑛 → ∞, in the limit each firm’s objective is

to maximize aggregate industry profits (resp. maximize own profit).

(ii) Under sp–𝜃 𝛾(𝑛), for

(a) 𝜃 ∈ [0, 1), lim𝑛→∞ 𝛾𝑠𝑝−𝜃
11 (𝑛) = 0,

(b) 𝜃 = 1, 𝛾𝑠𝑝−1
11 (𝑛) = 𝜎 for every 𝑛 so each firm’s behavior is invariant to 𝑛,

(c) 𝜃 > 1, lim𝑛→∞ 𝛾𝑠𝑝−𝜃
11 (𝑛) = 1.

There is an intuitive connection between parameter values and behavioral properties

of the resulting NBRD mechanism. Introducing convexity through 𝜃 > 1, which gives

large shareholders more than proportional control as measured by 𝛾11, indeed translates

to the large shareholder gaining complete control of each firm as remaining ownership is

dispersed among infinitely many shareholders. The converse is true under 𝜃 < 1. Thus,

as 𝑛 → ∞, the two firms behave as a two-plant monopolist (resp. compete with each of

them maximizing own profit) if 𝜃 > 1 (resp. 𝜃 < 1). When 𝜃 = 1, the control weights

(i.e., 𝛽𝑖𝑗 and 𝛿𝑖𝑗) of each shareholder are proportional to the number of shares she holds,
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and as shown in Proposition 3, this exactly corresponds to the behavioral definition of

proportional control.

4.3.2 Competitive effects of common ownership and policy implications

Finally, I compare WAPP and NBRD in terms of theoretical predictions and policy

implications. Specifically, I look at how market outcomes change as an investor varies the

degree of diversification of a fixed number of shares across the industry.

Consider a homogeneous product Cournot duopoly (𝑚 = 2) with 3 investors (𝑛 = 3),

linear inverse demand 𝑃 (𝑄) = max{10 − 𝑄,0} and symmetric linear cost functions

𝐶1(𝑞1) = 𝑞1, 𝐶2(𝑞2) = 𝑞2. Under both NBRD and WAPP, let control be proportional

𝛽(𝑠) = 𝛾(𝑠) = 𝛿(𝑠) = 𝑠, and the ownership structure be

𝑠 =

⎡⎢⎢⎢⎣
𝑠11 0.45− 𝑠11

1− 𝑠11 0

0 0.55 + 𝑠11

⎤⎥⎥⎥⎦ ,

which is indexed by the shares 𝑠11 of investor 1 in firm 1.

The two firms are equally efficient and investor 1 (e.g., a large fund) can choose how to

distribute her total holdings of 0.45 in the industry between the two firms. Investors 2 and

3 are passive in that they are indifferent towards the capital they invest in the firms. The

fund can buy shares of either firm at the same price and the rest of the capital is provided

by investors 2 and 3. Define the normalized value 𝑡 := (𝑠11 − 0.225)/0.225 ∈ [−1,1]

measuring what firm the fund’s holdings are concentrated in. The closer 𝑡 is to 0, the

higher is the fund’s diversification; for 𝑡 = 0 the equilibrium is symmetric. As 𝑡 increases

investor 1’s holdings become more concentrated in firm 1.

Think of a policy that limits the degree of common ownership an investor can have

within the industry; it specifies some 𝜏 ∈ [0,1] and requires that 𝑡 ∈ [−1, − 𝜏 ] ∪ [𝜏,1].

Figure 2 shows equilibrium results under NBRD and WAPP.

If the fund only cares to maximize its portfolio profit, then under WAPP it will choose

𝑡 as close to 0 as possible. Thus, the price is decreasing in the restrictiveness 𝜏 of the

policy. However, under NBRD the fund picks 𝑡 as close as possible to either of the two

peaks (in its portfolio profit) as possible, so that the price is first constant and then

decreasing in 𝜏 . Therefore, a policy that is effective in increasing consumer welfare under
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Figure 2: Equilibrium with a large fund and two undiversified passive investors for varying
levels of diversification by the fund

Note: black lines represent equilibrium values under NBRD; blue ones under WAPP. Green
lines show the most preferred quantity of each shareholder for each firm with the competitor’s
quantity taken as given (fixed at its equilibrium value). The bottom two panels plot 𝜆12,𝜆21

(under WAPP) and ̃︀𝜆12,̃︀𝜆21 (under NBRD).
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WAPP may be ineffective under NBRD.34

Consider now an alternate scenario where the fund only cares to maximize its portfolio

diversification, that is min |𝑡|, in order for example to mitigate risk or track an industry

index. Then, under WAPP, the price is decreasing in 𝜏 . However, under NBRD, the price

is first increasing and then decreasing in 𝜏 . Thus, a policy that is effective under WAPP

may in fact harm consumer welfare under NBRD.

The differences in predictions between WAPP and NBRD are due to the differences

(between the two mechanisms) in magnitudes of the various channels through which a

change in 𝑡 affects equilibrium outcomes. As 𝑡 changes, both the fund’s preferences and

the division of power within each firm change.

Under WAPP, as 𝑡 (i.e., 𝑠11) increases, the degree to which the fund wants firm 1 (resp.

2) to internalize firm 2’s (resp. 1’s) profits decreases (resp. increases), which tends to shift

production towards firm 1. On the other hand, as 𝑡 increases investor 2’s control of firm

1 decreases, and investor 3’s control of firm 2 increases, which tend to shift production

towards firm 2. Under WAPP, around 𝑡 = 0, the latter effects dominate, so that firm 2’s

quantity increases with 𝑡, while the quantity of firm 1 decreases making it unprofitable

for the fund to pick 𝑡 ̸= 0. Also, firm 1’s quantity increases faster than firm 2’s quantity

decreases with 𝑡 (around 𝑡 = 0), and the price has a global maximum at 𝑡 = 0 under.

However, under NBRD, as 𝑡 increases (around 𝑡 = 0), production shifts towards firm

1, which is in the interest of the fund when 𝑡 > 0. This makes it profitable for the fund to

pick 𝑡 ̸= 0. Also, firm 1’s quantity increases more slowly than firm 2’s quantity decreases

with 𝑡 (around 𝑡 = 0), so that the price has a local minimum at 𝑡 = 0 under NBRD.

Similarly, based on WAPP a consumer-welfare-maximizing regulator would want to

block a trade that brings 𝑡 from −0.25 to 0, even though this trade would increase

consumer welfare under NBRD.

Last, notice that the graphs of control weights 𝛾 and ̃︀𝛾 differ between WAPP and

NBRD. These weights capture the extent to which changes in investor preferences (e.g.,

due to a stock trade) will be accommodated by each firm. Thus, the WAPP and NBRD

models will give different predictions regarding stock trade effects.

34Remember that consumer surplus is increasing in the total quantity (and thus decreasing in the price)
in a homogeneous product market.
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5 Application: homogeneous product Cournot oligopoly

This section characterizes the Nash-in-Nash equilibrium of a homogeneous product Cournot

oligopoly and studies how changes in corporate control affect equilibrium outcomes.35

5.1 A Nash-in-Nash model of Cournot oligopoly with common ownership

There is a set 𝑁 of 𝑛 firms producing a homogeneous good. Each firm 𝑗 chooses its

production quantity 𝑞𝑗 simultaneously with the other firms. Denote by 𝑤𝑗 ≡ 𝑞𝑗/𝑄 firm

𝑗’s market share of the total quantity 𝑄 :=
∑︀𝑛

𝑘=1 𝑞𝑘. 𝑞−𝑗 denotes the production profile

of the firms other than 𝑗, and 𝑄−𝑗 :=
∑︀𝑛

𝑘 ̸=𝑗 𝑞𝑘. Firm 𝑗’s production cost is given by the

twice-differentiable function 𝐶𝑗 : R+ → R+ with 𝐶 ′
𝑗(𝑞𝑗) > 0 globally.

The twice-differentiable inverse demand function 𝑃 (𝑄) satisfies 𝑃 ′(𝑄) < 0 ∀𝑄 ∈
[︀
0,𝑄

)︀
,

where 𝑄 ∈ (0,+∞] is such that 𝑃 (𝑄) > 0 ⇐⇒ 𝑄 ∈
[︀
0,𝑄

)︀
. 𝜂(𝑄) := −𝑃/(𝑄𝑃 ′) denotes

the elasticity of demand. Firm 𝑗’s profit is given by 𝜋𝑗(𝑞) := 𝑞𝑗𝑃 (𝑄)− 𝐶𝑗(𝑞𝑗).

Define the following index of the weight firm 𝑗 places on other firms’ profits

𝜆𝑗(𝑞,𝑠) :=
∑︁

𝑘∈𝑀∖{𝑗}

𝑤𝑘
̃︀𝜆𝑗𝑘(𝑞−𝑗,𝑠) ≡

∑︁
𝑘∈𝑀∖{𝑗}

𝑤𝑘

∑︀
𝑖∈𝑁𝑗(𝛽*𝑗)

̃︀𝛾𝑖𝑗(𝑞−𝑗,𝑠)𝑠𝑖𝑘∑︀
𝑖∈𝑁𝑗(𝛽*𝑗)

̃︀𝛾𝑖𝑗(𝑞−𝑗,𝑠)𝑠𝑖𝑗
.

Similarly, for each pair of distinct firm’s 𝑗 and 𝑘 and each shareholder 𝑖 of firm 𝑗 define

𝜆𝑖;𝑗(𝑞,𝑠𝑖*) :=
∑︀

𝑘∈𝑀∖{𝑗}𝑤𝑘𝜆𝑖;𝑗𝑘, an index of the weight shareholder 𝑖 wants firm 𝑗 to place

on other firms’ profits.

Define also the bargaining-adjusted (i) Herfindahl-Hirschman Index (HHI) of market

shares, (ii) MHHIΔ, and (iii) modified HHI, (iv) weighted average Lerner index LI,

respectively given by

HHI(𝑞) :=
∑︁
𝑗∈𝑀

𝑤2
𝑗 , MHHIΔ(𝑞,𝑠) :=

∑︁
𝑗∈𝑀

𝑤𝑗𝜆𝑗(𝑞,𝑠),

MHHI(𝑞,𝑠) := HHI(𝑞) + MHHIΔ(𝑞,𝑠), LI(𝑞) :=
𝑚∑︁
𝑗=1

𝑤𝑗

𝑃 (𝑄)− 𝐶 ′
𝑗(𝑞𝑗)

𝑃 (𝑄)
.

35As seen in section 4, the analysis is also valid under WAPP.
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5.2 Nash-in-Nash equilibrium characterization

Let ̃︀𝑆 ⊆ 𝑆 be an open subset of 𝑆 such that for every 𝑠 ∈ ̃︀𝑆, there is a unique and

interior equilibrium 𝑞* where 𝑢
(︀
NB𝛽*𝑗 ,𝑑*𝑗

(︀
𝑞*−𝑗,𝑠

)︀
,𝑞*−𝑗,𝑠

)︀
≫ 𝑑*𝑗(𝑞

*
−𝑗,𝑠) for every firm 𝑗 ∈

𝑀 . 𝑞* : ̃︀𝑆 → R𝑚
++ returns this equilibrium as a function of 𝑠.36 Similarly, write

𝑄* ≡
∑︀

𝑘∈𝑀 𝑞*𝑘, 𝑤
*
𝑗 := 𝑞*𝑗/𝑄

*. To simplify notation, define also 𝛾*
𝑖𝑗(𝑠) := ̃︀𝛾𝑖𝑗(𝑞*−𝑗(𝑠),𝑠),

𝜆*
𝑗𝑘(𝑠) := ̃︀𝜆𝑗𝑘(𝑞

*
−𝑗(𝑠),𝑠), 𝜆

*
𝑗(𝑠) := 𝜆𝑗(𝑞

*(𝑠),𝑠), 𝜆
*
𝑖;𝑗(𝑠) := 𝜆𝑖;𝑗(𝑞

*(𝑠),𝑠𝑖*) for every investor

𝑖 ∈ 𝑁 and pair of distinct firms 𝑗,𝑘 ∈ 𝑀 . These functions give the equilibrium values of

the corresponding objects as functions of the ownership structure. 𝑞*(𝑠) is then pinned

down by the following FOCs:

𝑓(𝑞,𝑠) :=
(︁∑︀

𝑖∈𝑁1(𝛽*1)
𝛾*
𝑖1(𝑠)

𝜕𝑢𝑖(𝑞,𝑠𝑖*)
𝜕𝑞1

. . .
∑︀

𝑖∈𝑁𝑚(𝛽*𝑚) 𝛾
*
𝑖𝑚(𝑠)

𝜕𝑢𝑖(𝑞,𝑠𝑖*)
𝜕𝑞𝑚

)︁⃒⃒⃒
𝑞=𝑞*(𝑠)

= 0.

Denote the Jacobian of 𝑓(𝑞,𝑠) (with respect to 𝑞) by 𝐽(𝑞,𝑠). An interior, regular

equilibrium is then defined as follows.

Definition 15. An equilibrium 𝑞* is called interior and regular if (i) 𝑞* ≫ 0, (ii) for every

firm 𝑗 ∈ 𝑀 , 𝑑𝑁𝑗(𝛽*𝑗)𝑗(𝑞
*
−𝑗,𝑠) ≪ 𝑢𝑁𝑗(𝛽*𝑗)

(︀
𝑞*𝑗 ,𝑞

*
−𝑗,𝑠

)︀
, and (iii) 𝐽(𝑞*,𝑠) is negative definite.

It is a maintained assumption that the equilbirium is interior and regular. Proposition

4 derives the equilibrium markup of each firm and the relationship between the weighted

average Lerner index and the MHHI.

Proposition 4. In equilibrium for every firm 𝑗 ∈ 𝑀 it holds that

𝑃 (𝑄*)− 𝐶 ′
𝑗(𝑞

*
𝑗 )

𝑃 (𝑄*)
=

𝑤*
𝑗 + 𝜆

*
𝑗(𝑠)

𝜂(𝑄*)
.

The weighted average Lerner Index is LI(𝑞*) = MHHI(𝑞*,𝑠)/𝜂(𝑄*).

5.3 Competitive effects of changes in corporate control

Consider an exogenous change in an investor’s control power over a firm.

Definition 16. An exogenous increase (resp. decrease) in investor 𝑖’s control over firm 𝑗

at 𝑠 ∈ 𝑆 × R𝑚
+ is a change in the corporate control mechanism of firm 𝑗 so that 𝛽𝑖𝑗(𝑠*𝑗)

36I will sometimes simply write 𝑞* instead of 𝑞*(𝑠).
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changes infinitesimally by 𝑑𝛽𝑖𝑗 > (resp. <) 0 with all else kept constant.37

Proposition 5 then studies the effects of a change in a shareholder’s control over a firm.

Proposition 5. An exogenous increase (resp. decrease) in investor 𝑖’s control over firm 𝑗

causes firm 𝑗’s quantity to change in the direction (resp. direction opposite to the one)

preferred by shareholder 𝑖, that is

sgn

{︂
𝑑𝑞*𝑗
𝑑𝛽𝑖𝑗

}︂
= sgn

{︃
𝜕𝑢𝑖 (𝑞,𝑠𝑖*)

𝜕𝑞𝑗

⃒⃒⃒⃒
𝑞=𝑞*

}︃
= sgn

{︁
𝜆
*
𝑗(𝑠)− 𝜆

*
𝑖;𝑗(𝑠)

}︁
.

Proposition 5 shows that if a firm is underproducing (resp. overproducing) relative to a

shareholder’s preferences and that shareholder’s control over that firm increases, then the

firms quantity will increase (resp. decrease). The proposition also provides an intuitive

measure of whether the firm is under- or overproducing relative to the investor’s preferences.

It underproduces (resp. overproduces) if its (local) weighted average Edgeworth coefficient

𝜆
*
𝑗(𝑠) is higher (resp. lower) than the shareholder’s weighted Edgeworth coefficient.

A policy proposal by Posner et al. (2017) is to require institutional investors to be

passive if they accumulate large amounts of stock in multiple competing firms. Such a

policy can be understood as setting 𝛽𝑖𝑗 = 0 for an investment fund 𝑖 and every firm 𝑗.

Provided that total quantity changes in the same direction as firm 𝑗’s quantity, this policy

will indeed increase consumer welfare if 𝜆
*
𝑖;𝑗(𝑠) > 𝜆

*
𝑗(𝑠) along a path where 𝛽𝑖𝑗’s go to 0

for every firm 𝑗.38

6 Conclusion

Both theoretical and empirical work has so far followed the weighted average portfolio

profit (WAPP) model of O’Brien and Salop (2000) to model corporate control under

common ownership. This paper has proposed an alternative model of corporate control

modeling firm policy as the result of asymmetric Nash bargaining (NB) among shareholders.

37For the entries of 𝛽*𝑗 to still sum up to 1, the other entries clearly need to decrease. However, this is
just a normalization that does not affect the analysis, so it is ignored. Also, notice that an exogenous
increase (resp. decrease) in 𝑑𝑖𝑗 will have the same qualitative effect as an increase (resp. decrease) in 𝛽𝑖𝑗 .

38Under WAPP, the total quantity changes in the same direction as firm 𝑗’s quantity if the game is
aggregative and the slope of each firm’s best response function is higher than −1 (e.g., see Farrell and
Shapiro, 1990; Vives, 1999). The game is aggregative if 𝑠 is such that for every firm 𝑗 ∈ 𝑀 , 𝜆𝑗𝑘(𝑠) = 𝜆𝑗ℎ(𝑠)
for every pair of firms 𝑘,ℎ ∈ 𝑀 ∖ {𝑗}.
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It thereby extends the use of the Nash-in-Nash approach to the case of oligopolistic

competition when within each firm shareholders bargain over firm conduct.

I have shown that NB is a rich framework within which a satisfying model of corporate

control can be searched for. WAPP is indeed a special case of the NB model, yet with

important deficiencies. I have argued that NB with random dictatorship disagreement

payoffs (NBRD) overcomes the deficiencies of WAPP and gives rise to a natural connection

between model parameters and properties of a firm’s best response function. At the same

time, adopting NBRD instead of WAPP leads to significantly different theoretical results

and policy implications. Last, I have applied the Nash-in-Nash approach in a Cournot

market to study the competitive effects of changes in corporate control offering a rationale

for policy recommendations that would require institutional investors to be passive.

Future work can examine whether these differences between NBRD and WAPP extend

beyond theoretical results to (structural) empirical estimates. Empirical studies can

leverage the Nash-in-Nash approach to estimate the effects of common ownership and test

the robustness of findings derived under the standard approach that uses WAPP (e.g., see

Backus et al., 2021).
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Appendix A: proofs

Proof of Proposition 1 The game can be seen as a generalized game where the

action constraint correspondence is 𝐵𝑃
𝑗 (𝑎−𝑗,𝑠) := {𝑎𝑗 ∈ 𝐴𝑗 : 𝑢 (𝑎𝑗,𝑎−𝑗,𝑠) ≥ 𝑑*𝑗(𝑎−𝑗,𝑠)}.

The proof is composed of three steps.

Step 1: 𝐵𝑃
𝑗 (𝑎−𝑗,𝑠) is

(i) non-empty by property (i) of disagreement payoffs of NB mechanisms,

(ii) compact as a closed subset of a compact set (since 𝑢 is continuous in 𝑎𝑗),

(iii) upper hemicontinuous in 𝑎−𝑗 , as a closed-valued correspondence to a compact space

(e.g., see Corollary 9 in p.111, Aubin and Ekeland, 1984),

(iv) lower hemicontinuous in 𝑎−𝑗 by assumption.

Also, the Nash product is continuous in 𝑎𝑗 and 𝑎−𝑗 given that 𝑢 and 𝑑*𝑗 are. It follows

then by Berge’s maximum theorem that 𝑔𝑗 (𝑎−𝑗,𝑠) is an upper hemicontinuous, non-empty-

valued and compact-valued correspondence.

Step 2: For any 𝑖 ∈ 𝑁 and any 𝑎−𝑗 ∈ 𝐴𝑗 we have that 𝑢𝑖

(︀
𝛿𝑎𝑗 + (1− 𝛿)𝑎′𝑗,𝑎−𝑗,𝑠𝑖*

)︀
−

𝑑𝑖𝑗(𝑎−𝑗,𝑠) is concave over 𝐵𝑃
𝑗 (𝑎−𝑗,𝑠). It follows that for any 𝑖 ∈ 𝑁𝑗(𝛽*𝑗) and any 𝑎−𝑗

(︀
𝑢𝑖

(︀
𝛿𝑎𝑗 + (1− 𝛿)𝑎′𝑗,𝑎−𝑗,𝑠𝑖*

)︀
− 𝑑𝑖𝑗(𝑎−𝑗,𝑠)

)︀𝛽𝑖𝑗(𝑠*𝑗)

is concave (and thus log-concave) over 𝐵𝑃
𝑗 (𝛼−𝑗,𝑠), since 𝑎𝑗 ↦→ 𝑢𝑖

(︀
𝛿𝑎𝑗 + (1− 𝛿)𝑎′𝑗,𝑎−𝑗,𝑠𝑖*

)︀
−

𝑑𝑖𝑗(𝑎−𝑗,𝑠) is concave and 𝑥 ↦→ 𝑥𝛽
𝑖𝑗(𝑠*𝑗) is concave and increasing. Thus,

∏︁
𝑖∈𝑁𝑗(𝑠)

(𝑢𝑖 (𝑎𝑗,𝑎−𝑗,𝑠𝑖*)− 𝑑𝑖𝑗(𝑎−𝑗,𝑠))
𝛽𝑖𝑗(𝑠*𝑗)

is log-concave over 𝐵𝑃
𝑗 (𝑎−𝑗,𝑠) as a product of log-concave functions (and thus also quasi-

concave in 𝑎𝑗 for every 𝑎−𝑗). The product is also continuous in 𝑎𝑗 and 𝑎−𝑗 , and given also

that 𝐵𝑃
𝑗 (𝑎−𝑗,𝑠) is convex for any 𝑎−𝑗 ∈ 𝐴−𝑗, it follows that 𝑔𝑗 (𝑎−𝑗,𝑠) is convex-valued.

Step 3: 𝐺(𝑎) := ×𝑗∈𝑀𝑔𝑗(𝑎−𝑗,𝑠) is an upper hemicontinuous, non-empty-, compact-

and convex-valued correspondence since 𝑔𝑗 is for each 𝑗 ∈ 𝑀 . By Kakutani’s fixed point

theorem, 𝐺 admits a fixed point, which is an equilibrium. Q.E.D.
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Proof of Proposition 2 Part (i) Let 𝑔𝑗 be WAPP with control power function 𝛾*𝑗.

Regularity: Assume by contradiction that 𝑔𝑗 is not regular. That is, there exist

𝑠 ∈ 𝑆, 𝛼−𝑗 ∈ ×𝑘 ̸=𝑗Δ(𝐴−𝑘) and 𝛼𝑗,𝛼
′
𝑗 ∈ 𝑔𝑗(𝛼−𝑗,𝑠), such that 𝑢 (𝛼𝑗,𝛼−𝑗,𝑠) ̸= 𝑢

(︀
𝛼′
𝑗,𝛼−𝑗,𝑠

)︀
.

Then, by strict convexity of 𝒰𝑗 (𝛼−𝑗, 𝑠), for any 𝜆 ∈ (0,1) it holds that

𝑣 := 𝜆𝑢 (𝛼𝑗,𝛼−𝑗,𝑠) + (1− 𝜆)𝑢
(︀
𝛼′
𝑗,𝛼−𝑗,𝑠

)︀
∈ int (𝒰𝑗 (𝛼−𝑗, 𝑠))

and thus there exists 𝑣′ ∈ 𝒰𝑗 (𝛼−𝑗, 𝑠) such that 𝑣′ ≫ 𝑣, or equivalently 𝛼*
𝑗 such that

𝑢
(︀
𝛼*
𝑗 ,𝛼−𝑗, 𝑠

)︀
≫ 𝑣. But then

∑︀
𝑖∈𝑁 𝛾𝑖𝑗(𝑠*𝑗)𝑢𝑖

(︀
𝛼*
𝑗 , 𝛼−𝑗, 𝑠𝑖*

)︀
is higher than

> 𝜆
∑︁
𝑖∈𝑁

𝛾𝑖𝑗(𝑠*𝑗)𝑢𝑖 (𝛼𝑗, 𝛼−𝑗, 𝑠𝑖*) + (1− 𝜆)
∑︁
𝑖∈𝑁

𝛾𝑖𝑗(𝑠*𝑗)𝑢𝑖

(︀
𝛼′
𝑗, 𝛼−𝑗, 𝑠𝑖*

)︀
=

∑︁
𝑖∈𝑁

𝛾𝑖𝑗(𝑠*𝑗)𝑢𝑖 (𝛼𝑗, 𝛼−𝑗, 𝑠𝑖*) =
∑︁
𝑖∈𝑁

𝛾𝑖𝑗(𝑠*𝑗)𝑢𝑖

(︀
𝛼′
𝑗, 𝛼−𝑗, 𝑠𝑖*

)︀
,

which contradicts that 𝛼𝑗,𝛼
′
𝑗 ∈ 𝑔𝑗(𝛼−𝑗,𝑠).

Efficiency: For every 𝑠 ∈ 𝑆 define ̃︀𝑁(𝑠*𝑗) = {𝑖 ∈ 𝑁 : 𝛾𝑖𝑗(𝑠*𝑗) > 0}, and use ̃︀𝑁(𝑠*𝑗)

to verify that 𝑔𝑗 satisfies the efficiency conditions.

Part (ii) I know prove each direction of part (ii) separately.

(⇒) Let 𝑔𝑗 be regular and efficient, so that there exists function ̃︀𝑁(𝑠*𝑗) satisfying the

the efficiency conditions. For every (𝛼−𝑗,𝑠) ∈ ×𝑘 ̸=𝑗Δ(𝐴−𝑘)× 𝑆 let the bargaining power

function be

𝛽*𝑗(𝑠*𝑗) :=
1⃒⃒⃒ ̃︀𝑁(𝑠*𝑗)

⃒⃒⃒ (︁I(︁1 ∈ ̃︀𝑁(𝑠*𝑗)
)︁

. . . I
(︁
𝑛 ∈ ̃︀𝑁(𝑠*𝑗)

)︁)︁
,

where I the indicator function, and the disagreement payoff function be 𝑑*𝑗(𝛼−𝑗,𝑠) :=

𝑢(𝛼𝑗 (𝛼−𝑗,𝑠) ,𝛼−𝑗,𝑠) for some function 𝛼𝑗 (𝛼−𝑗,𝑠) that is a selection from 𝑔𝑗 (𝛼−𝑗,𝑠), that

is 𝛼𝑗 (𝛼−𝑗,𝑠) ∈ 𝑔𝑗 (𝛼−𝑗,𝑠). 𝑑*𝑗 is well-defined since 𝑔𝑗 is regular. Notice that by the way

𝛽*𝑗 is defined, 𝑁𝑗(𝛽*𝑗) = ̃︀𝑁(𝑠*𝑗). Then, it follows that

(a) any 𝛼𝑗 ∈ 𝑔𝑗 (𝛼−𝑗,𝑠) achieves the maximum value of zero for the Nash product, so

𝑔𝑗 (𝛼−𝑗,𝑠) ⊆ argmax
𝛼𝑗∈𝐵𝑗(𝑎−𝑗 ,𝑠)

⎧⎨⎩ ∏︁
𝑖∈𝑁𝑗(𝛽*𝑗)

(𝑢𝑖 (𝛼𝑗,𝛼−𝑗,𝑠𝑖*)− 𝑑𝑖𝑗(𝛼−𝑗,𝑠))
𝛽𝑖𝑗(𝑠*𝑗)

⎫⎬⎭ .
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(b) and by regularity of NB (shown below) any

𝛼𝑗,𝛼
′
𝑗 ∈ argmax

𝛼𝑗∈𝐵𝑗(𝑎−𝑗 ,𝑠)

⎧⎨⎩ ∏︁
𝑖∈𝑁𝑗(𝛽*𝑗)

(𝑢𝑖 (𝛼𝑗,𝛼−𝑗,𝑠𝑖*)− 𝑑𝑖𝑗(𝛼−𝑗,𝑠))
𝛽𝑖𝑗(𝑠*𝑗)

⎫⎬⎭ .

satisfy 𝑢𝑖 (𝛼𝑗,𝛼−𝑗,𝑠𝑖*) = 𝑢𝑖

(︀
𝛼′
𝑗,𝛼−𝑗,𝑠𝑖*

)︀
for every 𝑖 ∈ 𝑁𝑗(𝛽*𝑗). Therefore, by efficiency

of 𝑔𝑗 (condition (iv) in Definition 12)

𝑔𝑗 (𝛼−𝑗,𝑠) ⊇ argmax
𝛼𝑗∈𝐵𝑗(𝑎−𝑗 ,𝑠)

⎧⎨⎩ ∏︁
𝑖∈𝑁𝑗(𝛽*𝑗)

(𝑢𝑖 (𝛼𝑗,𝛼−𝑗,𝑠𝑖*)− 𝑑𝑖𝑗(𝛼−𝑗,𝑠))
𝛽𝑖𝑗(𝑠*𝑗)

⎫⎬⎭ .

(⇐) Let 𝑔𝑗 be NB with bargaining power function 𝛽*𝑗.

Regularity: I look at the following two cases separately.

Case 1: Consider the case where there exists 𝑢 ∈ 𝒰𝑗 (𝛼−𝑗, 𝑠) such that 𝑢𝑖 > 𝑑𝑖𝑗 for

every 𝑖 ∈ 𝑁𝑗(𝛽*𝑗). The Nash product
∏︀

𝑖∈𝑁𝑗(𝛽*𝑗)
(𝑢𝑖 − 𝑑𝑖𝑗)

𝛽𝑖𝑗 is strictly quasiconcave in

𝑢 where that inequality holds. Thus, since 𝒰𝑗 (𝛼−𝑗, 𝑠) is convex for every 𝑠 ∈ 𝑆 and

𝛼−𝑗 ∈ ×𝑘 ̸=𝑗Δ(𝐴𝑘), there exists at most one 𝑢 ∈ 𝒰𝑗 (𝛼−𝑗, 𝑠) that maximizes the Nash

product.

Case 2: Consider the case where there does not exist 𝑢 ∈ 𝒰𝑗 (𝛼−𝑗, 𝑠) such that

𝑢𝑖 > 𝑑𝑖𝑗 for every 𝑖 ∈ 𝑁𝑗(𝛽*𝑗). Assume by contradiction that there are two distinct

𝑢, 𝑢′ ∈ 𝒰𝑗 (𝛼−𝑗, 𝑠) that maximize the Nash product (which achieves a value of zero). Then,

by strict convexity of 𝒰𝑗 (𝛼−𝑗, 𝑠), for any 𝜆 ∈ (0,1) it holds that 𝑣 := 𝜆𝑢 + (1 − 𝜆)𝑢′ ∈

int (𝒰𝑗 (𝛼−𝑗, 𝑠)), and thus there exists 𝑣′ ∈ 𝒰𝑗 (𝛼−𝑗, 𝑠) such that 𝑣′ ≫ 𝑣, or equivalently 𝛼*
𝑗

such that 𝑢
(︀
𝛼*
𝑗 ,𝛼−𝑗, 𝑠

)︀
≫ 𝑣. But then, 𝛼*

𝑗 makes the Nash product positive (thus higher

than 𝑢 and 𝑢′ do), a contradiction.

Efficiency: For every 𝑠 ∈ 𝑆 define ̃︀𝑁(𝑠*𝑗) := {𝑖 ∈ 𝑁 : 𝛽𝑖𝑗(𝑠*𝑗) > 0}, and use ̃︀𝑁(𝑠*𝑗)

to verify that 𝑔𝑗 satisfies the efficiency conditions. Q.E.D.

Proof of Proposition 3 Part (i) Let 𝑔𝑗 be NBRD with 𝛽*𝑗 = 𝛽𝑃
*𝑗 and 𝛿*𝑗 = 𝛿𝑃*𝑗, that

is, for every 𝑠 ∈ 𝑆 and 𝛼−𝑗 ∈ ×𝑘 ̸=𝑗Δ(𝐴−𝑘), 𝑔𝑗 (𝛼−𝑗,𝑠) is equal to

argmax
𝛼𝑗∈𝐵𝑗(𝑎−𝑗 ,𝑠)

⎧⎨⎩ ∏︁
𝑖∈𝑁𝑗(𝑠*𝑗)

⎛⎝𝑢𝑖 (𝛼𝑗,𝛼−𝑗,𝑠𝑖*)−
∑︁

𝑘∈𝑁𝑗(𝑠*𝑗)

𝑠𝑘𝑗𝑢𝑖

(︂
𝛼𝑑
𝑗

(︂
𝛼−𝑗,

𝑠𝑘*
𝑠𝑘𝑗

)︂
,𝛼−𝑗,𝑠𝑖*

)︂⎞⎠𝑠𝑖𝑗
⎫⎬⎭ .
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Now, notice that because of the linearity of 𝑢𝑖 (𝛼𝑗,𝛼−𝑗,𝑠𝑖*) in 𝑠𝑖*, the Nash product above

is equal to

∏︁
𝑖∈𝑁𝑗(𝑠*𝑗)

𝑠
𝑠𝑖𝑗
𝑖𝑗

⎛⎝𝑢𝑖

(︂
𝛼𝑗,𝛼−𝑗,

𝑠𝑖*
𝑠𝑖𝑗

)︂
−

∑︁
𝑘∈𝑁𝑗(𝑠*𝑗)

𝑠𝑘𝑗𝑢𝑖

(︂
𝛼𝑑
𝑗

(︂
𝛼−𝑗,

𝑠𝑘*
𝑠𝑘𝑗

)︂
,𝛼−𝑗

𝑠𝑖*
𝑠𝑖𝑗

)︂⎞⎠𝑠𝑖𝑗

,

which (given that the positive multiplicative terms 𝑠
𝑠𝑖𝑗
𝑖𝑗 do not affect the extrema of the

Nash product with respect to 𝛼𝑗) implies that 𝑔𝑗 (𝛼−𝑗,𝑠) is equal to

argmax
𝛼𝑗∈𝐵𝑗(𝑎−𝑗 ,𝑠)

⎧⎨⎩ ∏︁
𝑖∈𝑁𝑗(𝑠*𝑗)

⎛⎝𝑢𝑖

(︂
𝛼𝑗,𝛼−𝑗,

𝑠𝑖*
𝑠𝑖𝑗

)︂
−

∑︁
𝑘∈𝑁𝑗(𝑠*𝑗)

𝑠𝑘𝑗𝑢𝑖

(︂
𝛼𝑑
𝑗

(︂
𝛼−𝑗,

𝑠𝑘*
𝑠𝑘𝑗

)︂
,𝛼−𝑗,

𝑠𝑖*
𝑠𝑖𝑗

)︂⎞⎠𝑠𝑖𝑗
⎫⎬⎭ .

The objective function can then be written as

∏︁
𝑣∈𝑉𝑗(𝑠)

⎛⎝𝑢𝑖 (𝛼𝑗,𝛼−𝑗, 𝑣)−
∑︁

𝑣′∈𝑉𝑗(𝑠)

𝑝𝑗(𝑣
′,𝑠)𝑢𝑖

(︀
𝛼𝑑
𝑗 (𝛼−𝑗, 𝑣

′) ,𝛼−𝑗, 𝑣
)︀⎞⎠𝑝𝑗(𝑣,𝑠)

,

where 𝑉𝑗(𝑠) :=
{︀
𝑣′ ∈ R𝑚

+ : ∃𝑖 ∈ 𝑁𝑗(𝑠*𝑗) with 𝑠𝑖*/𝑠𝑖𝑗 = 𝑣′
}︀
. Now, take 𝑠,𝑠′ ∈ 𝑆 such

that 𝑠′ is a rearrangement of 𝑠 for firm 𝑗, that is, 𝑝𝑗(𝑣,𝑠
′) = 𝑝𝑗(𝑣,𝑠) for every 𝑣 ∈{︀

𝑣′ ∈ R𝑚
+ : 𝑣′𝑗 = 1

}︀
. Then, given any 𝛼−𝑗, the last objective function is the same under 𝑠

and under 𝑠′, so the maxima are the same.

Part (ii) Let 𝑔𝑗 be WAPP with 𝛾*𝑗 = 𝛾𝑠𝑝−0
*𝑗 , that is, for every 𝑠 ∈ 𝑆 and 𝛼−𝑗 ∈

×𝑘 ̸=𝑗Δ(𝐴−𝑘)

𝑔𝑗 (𝛼−𝑗,𝑠) = argmax
𝛼𝑗∈Δ(𝐴𝑗)

⎧⎨⎩ ∑︁
𝑖∈𝑁𝑗(𝑠*𝑗)

1

|𝑁𝑗(𝑠*𝑗)|
𝑢𝑖(𝛼𝑗, 𝛼−𝑗, 𝑠𝑖*)

⎫⎬⎭
= argmax

𝛼𝑗∈Δ(𝐴𝑗)

⎧⎨⎩ ∑︁
𝑖∈𝑁𝑗(𝑠*𝑗)

𝑠𝑖𝑗
|𝑁𝑗(𝑠*𝑗)|

𝑢𝑖(𝛼𝑗, 𝛼−𝑗, 𝑠𝑖*/𝑠𝑖𝑗)

⎫⎬⎭
= argmax

𝛼𝑗∈Δ(𝐴𝑗)

⎧⎨⎩ ∑︁
𝑖∈𝑁𝑗(𝑠*𝑗)

𝑠𝑖𝑗𝑢𝑖(𝛼𝑗, 𝛼−𝑗, 𝑠𝑖*/𝑠𝑖𝑗)

⎫⎬⎭
= argmax

𝛼𝑗∈Δ(𝐴𝑗)

⎧⎨⎩ ∑︁
𝑣∈𝑉𝑗(𝑠)

𝑝𝑗(𝑣,𝑠)𝑢𝑖(𝛼𝑗, 𝛼−𝑗, 𝑣)

⎫⎬⎭ ,

where the second equality follows by the linearity of 𝑢𝑖 (𝛼𝑗,𝛼−𝑗,𝑠𝑖*) in 𝑠𝑖* and the third
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because 1/|𝑁𝑗(𝑠*𝑗)| is a positive number that does not vary with 𝑖. Thus, 𝑔𝑗 (𝛼−𝑗,𝑠)

depends on 𝑠 only through the values of 𝑝𝑗(𝑣,𝑠) for different 𝑣 ∈
{︀
𝑣′ ∈ R𝑚

+ : 𝑣′𝑗 = 1
}︀
, and

the result follows. Q.E.D.

Proof of Claim 1 First notice that

𝜆12(𝑛) = 𝜆21(𝑛) =
𝜎𝛾11(𝑛)

𝜎𝛾11(𝑛) +
𝑛−1
2

2(1−𝜎)
𝑛−1

2(1−𝛾11(𝑛))
𝑛−1

=
1

1 + 2(𝜎−1−1)((𝛾11(𝑛))−1−1)
𝑛−1

.

(i) 𝜆12(𝑛) is increasing in 𝑛 if and only if the denominator is decreasing in 𝑛, or

equivalently

−
𝜕𝛾11(𝑛)

𝜕𝑛

2(𝛾11(𝑛))2
(𝑛− 1)−

(︀
(𝛾11(𝑛))

−1 − 1
)︀
< 0.

(ii) If lim𝑛→∞ 𝑛𝛾11(𝑛) = ∞, then lim𝑛→∞[2 (𝜎−1 − 1) ((𝛾11(𝑛))
−1 − 1)]/(𝑛−1) = 0, since

the numerator is bounded and the denominator goes to ∞. Thus, lim𝑛→∞ 𝜆12(𝑛) = 1.

(iii) We have that

𝛾11(𝑛) =
𝜎𝜃

𝜎𝜃 +
(︀

2
𝑛−1

)︀𝜃−1
(1− 𝜎)𝜃

=
1

1 +
(︀

2
𝑛−1

)︀𝜃−1 (︀1−𝜎
𝜎

)︀𝜃 , so that

𝜆12(𝑛) = 𝜆21(𝑛) =
1

1 +
2(𝜎−1−1)( 2

𝑛−1)
𝜃−1

( 1−𝜎
𝜎 )

𝜃

𝑛−1

=
1

1 +
(︀

2
𝑛−1

)︀𝜃 (︀1−𝜎
𝜎

)︀1+𝜃

and the rest follows.

(iv) See Dubey and Shapley (1979, p. 112-114).

(v) We have that

𝛾11(𝑛) ≡ 𝛾𝑚𝐵
11 (𝑛) =

𝛾𝐵
11(𝑛)/𝜎

𝛾𝐵
11(𝑛)/𝜎 + 𝑛−1

2

2(1−𝛾𝐵11(𝑛))
𝑛−1

2(1−𝜎)
𝑛−1

=
1

1 + 𝑛−1
2

(𝛾𝐵
11(𝑛))

−1
−1

𝜎−1−1

so that

𝜆12(𝑛) = 𝜆21(𝑛) =
1

1 +
2(𝜎−1−1)𝑛−1

2

(𝛾𝐵11(𝑛))
−1

−1

𝜎−1−1

𝑛−1

= 𝛾𝐵
11(𝑛).

and the result follows from part (iv). Q.E.D.
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Proof of Claim 2 is trivial and thus left to the reader.

Proof of Proposition 4 The FOCs in equilibrium give (see section 4.2):

𝑃 (𝑄*)− 𝐶 ′
𝑗(𝑞

*
𝑗 ) + 𝑃 ′(𝑄*)

⎡⎣𝑞*𝑗 + ∑︁
𝑘∈𝑀∖{𝑗}

𝜆*
𝑗𝑘(𝑠)𝑞

*
𝑘

⎤⎦ = 0,

and the result follows. Q.E.D.

Proof of Proposition 5 The partial derivative of 𝑓(𝑞,𝑠) with respect to 𝛽𝑖𝑗 is

𝜕𝑓(𝑞,𝑠)

𝜕𝛽𝑖𝑗

=

⎡⎣𝛾*
𝑖𝑗

𝛽𝑖𝑗

𝜕𝑢𝑖 (𝑞,𝑠𝑖*)

𝜕𝑞𝑗
− 1

𝑢𝑖 − 𝑑𝑖𝑗

1∑︀
ℎ∈𝑁𝑗(𝛽*𝑗)

𝛽ℎ𝑗

𝑢ℎ−𝑑ℎ𝑗

∑︁
𝑡∈𝑁𝑗(𝛽*𝑗)

𝛾*
𝑡𝑗

𝜕𝑢𝑡 (𝑞,𝑠𝑡*)

𝜕𝑞𝑗

⎤⎦ · e𝑗

=
𝛾*
𝑖𝑗

𝛽𝑖𝑗

𝜕𝑢𝑖 (𝑞,𝑠𝑖*)

𝜕𝑞𝑗
· e𝑗,

where e𝑗 the 𝑚-dimensional standard unit vector with 1 in its 𝑗-th dimension. It follows

by the Implicit Function Theorem that⎛⎜⎜⎜⎜⎜⎜⎝

𝑑𝑞*1
𝑑𝛽𝑖𝑗

𝑑𝑞*2
𝑑𝛽𝑖𝑗

...

𝑑𝑞*𝑚
𝑑𝛽𝑖𝑗

⎞⎟⎟⎟⎟⎟⎟⎠ = −𝐽−1(𝑞*,𝑠)
𝜕𝑢𝑖 (𝑞,𝑠𝑖*)

𝜕𝑞𝑗

⃒⃒⃒⃒
𝑞=𝑞*

· e𝑗 = − (det (𝐽))−1 𝜕𝑢𝑖

𝜕𝑞𝑗
· adj (𝐽) e𝑗

= − (det (𝐽))−1 𝜕𝑢𝑖

𝜕𝑞𝑗
·

⎛⎜⎜⎜⎜⎜⎜⎝
(−1)1+𝑗 det (𝐽−𝑗−1)

(−1)2+𝑗 det (𝐽−𝑗−2)
...

(−1)𝑚+𝑗 det (𝐽−𝑗−𝑚)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where the second equality follows from the Laplace expansion, adj (𝐽) is the adjugate

or classical adjoint of 𝐽 , and 𝐽−𝑗−𝑘 is the 𝐽 matrix with the 𝑗-th row and 𝑘-th column

removed. Since 𝐽 is negative definite

sgn {det (𝐽)} = − sgn {det (𝐽−𝑗−𝑗)} = sgn{(−1)𝑚},

so that sgn

{︂
𝑑𝑞*𝑗
𝑑𝛽𝑖𝑗

}︂
= sgn

{︂
(−1)2𝑗

𝜕𝑢𝑖

𝜕𝑞𝑗

}︂
= sgn

{︃
𝜕𝑢𝑖 (𝑞,𝑠𝑖*)

𝜕𝑞𝑗

⃒⃒⃒⃒
𝑞=𝑞*

}︃
,
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where

𝜕𝑢𝑖 (𝑞,𝑠𝑖*)

𝜕𝑞𝑗

⃒⃒⃒⃒
𝑞=𝑞*

=
𝑚∑︁

ℎ=1

𝑠𝑖ℎ
𝜕𝜋ℎ(𝑞,𝑠𝑖*)

𝜕𝑞𝑗

⃒⃒⃒⃒
⃒
𝑞=𝑞*

= 𝑃 (𝑄*)

[︂
𝑠𝑖𝑗

𝑃 (𝑄*)− 𝐶 ′
𝑗(𝑞

*
𝑗 )

𝑃 (𝑄*)
−

∑︀𝑚
ℎ=1 𝑠𝑖ℎ𝑤

*
ℎ

𝜂(𝑄*)

]︂

= −𝑄*𝑃 ′(𝑄*)

[︃
𝑠𝑖𝑗

(︀
𝑤*

𝑗 + 𝜆𝑗

)︀
−

𝑚∑︁
ℎ=1

𝑠𝑖ℎ𝑤
*
ℎ

]︃
= −𝑄*𝑃 ′(𝑄*)𝑠𝑖𝑗

(︁
𝜆
*
𝑗 − 𝜆

*
𝑖;𝑗

)︁
,

and the result follows. Q.E.D.
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Appendix B: Supplementary results

Lemma 1 provides conditions for assumption (iv) of Proposition 1 to hold.

Lemma 1. Fix an 𝑠 ∈ 𝑆 and let condition (i) of Proposition 1 hold. For each firm 𝑗 ∈ 𝑀

let the corporate control mechanism 𝑔𝑗 be NB𝛽*𝑗 ,𝑑*𝑗 . 𝐵
𝑃
𝑗 (𝑎−𝑗) is lower hemicontinuous in

𝑎−𝑗 ∈ ̃︀𝐴−𝑗 if any of the following three conditions hold.

(i) For every 𝑗 ∈ 𝑀 , conditions (ii) and (v) of Proposition 1 hold, and for every

𝑎−𝑗 ∈ ̃︀𝐴−𝑗 there exists 𝑎𝑗 ∈ 𝐴𝑗 such that 𝑢 (𝑎𝑗,𝑎−𝑗,𝑠) ≫ 𝑑*𝑗(𝑎−𝑗,𝑠).

(ii) For every 𝑗 ∈ 𝑀 , conditions (ii) and (iii) of Proposition 1 hold and for every

𝑎−𝑗 ∈ ̃︀𝐴−𝑗, 𝐵
𝑃
𝑗 (𝑎−𝑗,𝑠) ⊆ cl ({𝑎𝑗 ∈ 𝐴𝑗 : 𝑢 (𝑎𝑗,𝑎−𝑗,𝑠) ≫ 𝑑*𝑗(𝑎−𝑗,𝑠)}).

(iii) For every 𝑗 ∈ 𝑀 , ̃︀𝐴𝑗 ⊂ R𝑟𝑗 is an 𝑟𝑗-dimensional compact and convex polytope.

Proof of Lemma 1 Part (i) follows from Proposition 4.2 in Dutang (2013), which is

an application of Theorem 5.9 in Rockafellar and Wets (1997). Part (ii) follows from

Proposition 4.3 in Dutang (2013); see also Theorem 13 of Hogan (1973). Part (iii) follows

from Corollary 2 in Maćkowiak (2006). A similar result is also given in Claim 2 of Banks

and Duggan (2004). Q.E.D.

Lemma 2 provides conditions under which in a Cournot oligopoly an investor’s portfolio

profit is strictly concave in a firm’s quantity.

Lemma 2. Fix an investor 𝑖 ∈ 𝑁 and a firm 𝑗 ∈ 𝑀 . If for every quantity profile 𝑞 such

that 𝑄 < 𝑄 it holds that

𝐸(𝑄)
∑︁
𝑘∈𝑀

𝑠𝑖𝑘𝑤𝑘 < 1 + 𝑠𝑖𝑗

(︂
1− 𝐶 ′′(𝑞𝑗)

𝑃 ′(𝑄)

)︂
,

where 𝐸(𝑄) := −𝑃 ′′(𝑄)𝑄/𝑃 ′(𝑄) the (absolute value of the) elasticity of the slope of

inverse demand, then for any 𝑞−𝑗, 𝑢𝑖(𝑞,𝑠𝑖*) is strictly concave in 𝑞𝑗 for every 𝑞𝑗 such that

𝑄 < 𝑄. A sufficient condition is

𝐸(𝑄) <
1 + 𝑠𝑖𝑗

max𝑘∈𝑀 𝑠𝑖𝑘
∀𝑄 ∈

[︀
0,𝑄

)︀
and 𝐶 ′′(𝑞𝑗) ≥ 0 ∀𝑞𝑗.
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Proof of Lemma 2 The derivative of 𝑢𝑖 (𝑞𝑗,𝑞−𝑗,𝑠𝑖*) with respect to 𝑞𝑗 is given by

𝜕𝑢𝑖 (𝑞𝑗,𝑞−𝑗,𝑠𝑖*)

𝜕𝑞𝑗
= 𝑠𝑖𝑗 (𝑃 (𝑄)− 𝐶 ′(𝑞𝑗)) + 𝑃 ′(𝑄)

∑︁
𝑘∈𝑀

𝑠𝑖𝑘𝑞𝑘,

and the second derivative by

𝜕2𝑢𝑖 (𝑞𝑗,𝑞−𝑗,𝑠𝑖*)

𝜕𝑞2𝑗
= (1 + 𝑠𝑖𝑗)𝑃

′(𝑄)− 𝑠𝑖𝑗𝐶
′′(𝑞𝑗) + 𝑃 ′′(𝑄)

∑︁
𝑘∈𝑀

𝑠𝑖𝑘𝑞𝑘

= 𝑃 ′(𝑄)

[︃
1 + 𝑠𝑖𝑗

(︂
1− 𝐶 ′′(𝑞𝑗)

𝑃 ′(𝑄)

)︂
− 𝐸(𝑄)

∑︁
𝑘∈𝑀

𝑠𝑖𝑘𝑤𝑘

]︃
,

and the result follows. Q.E.D.

Lemma 3 characterizes a firm’s problem in a Cournot oligopoly.

Lemma 3. Assume that assumed there exists 𝑞 > 0 such that 𝑃 (𝑞) < 𝐶𝑗(𝑞)/𝑞 for every

𝑞 > 𝑞 and every firm 𝑗 ∈ 𝑀 . Fix a firm 𝑗 ∈ 𝑀 and 𝑞−𝑗 and let the corporate control

mechanism 𝑔𝑗 be NB𝛽*𝑗 ,𝑑*𝑗 . Assume that for every investor 𝑖 ∈ 𝑁 , 𝑢𝑖(𝑞,𝑠𝑖*) is strictly

concave in 𝑞𝑗. Then, the following statements are true:

(i) 𝐵𝑃
𝑗 (𝑞−𝑗,𝑠) := {𝑞𝑗 ∈ 𝐴𝑗 : 𝑢 (𝑞𝑗,𝑞−𝑗,𝑠) ≥ 𝑑*𝑗(𝑞−𝑗,𝑠)} is a closed interval,

(ii) 𝑔𝑗 (𝑞−𝑗,𝑠) is a singleton,

(iii) the Nash product is increasing (resp. decreasing) in 𝑞𝑗 for 𝑞𝑗
(resp.>)
< 𝑔𝑗 (𝑞−𝑗,𝑠), and

(iv) if ∃𝑞𝑗 such that 𝑑𝑖(𝑞−𝑗,𝑠) < 𝑢𝑖 (𝑞𝑗,𝑞−𝑗,𝑠𝑖*) for every 𝑖 ∈ 𝑁𝑗(𝛽*𝑗), then 𝑔𝑗 (𝑞−𝑗,𝑠)

solves the FOC.

Proof of Lemma 3 Since for 𝑞𝑗 > 𝑞 profit becomes negative, we can constrain each

firm to choose quantity 𝑞𝑗 ∈ [0,𝑞]. From continuity of 𝑢𝑖 in 𝑞𝑗 and the definition of 𝐵𝑃
𝑗 it

follows then that 𝐵𝑃
𝑗 is compact. Especially, given strict concavity of 𝑢𝑖 in 𝑞𝑗 for every

𝑖, it follows that 𝐵𝑃
𝑗 is convex, thus a closed interval. We distinguish the following two

cases:

Case 1: Given that 𝑢𝑖 is strictly concave in 𝑞𝑗 for every 𝑖 (so 𝑢𝑖 can be equal to 𝑑𝑖𝑗

for at most 2 values of 𝑞𝑗 in 𝐵𝑃
𝑗 ), the only way that ∀𝑞𝑗 ∈ 𝐵𝑃

𝑗 there exists 𝑖 ∈ 𝑁 such

that 𝑑𝑖𝑗(𝑞−𝑗,𝑠) = 𝑢𝑖 (𝑞𝑗,𝑞−𝑗,𝑠𝑖*) is for 𝐵
𝑃
𝑗 to be a singleton. By continuity of 𝑢𝑖 in 𝑞𝑗, this
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means that 𝑑𝑖𝑗(𝑞−𝑗,𝑠) is equal to max𝑞𝑗 𝑢𝑖 (𝑞𝑗,𝑞−𝑗,𝑠𝑖*) for some 𝑖 ∈ 𝑁 , and the relevant

results follow.

Case 2: If ∃𝑞𝑗 ∈ 𝐵𝑃
𝑗 such that 𝑑*𝑗(𝑞−𝑗,𝑠) ≪ 𝑢 (𝑞𝑗,𝑞−𝑗,𝑠), we have that for every 𝑖 ∈ 𝑁

and every 𝑞𝑗 ∈ 𝐵𝑃
𝑗 (𝑞−𝑗,𝑠)

𝜕2 (𝑢𝑖 (𝑞𝑗,𝑞−𝑗,𝑠𝑖*)− 𝑑𝑖𝑗(𝑞−𝑗,𝑠))
𝛽𝑖𝑗(𝑠*𝑗)

𝜕𝑞2𝑗

=− 𝛽𝑖𝑗(𝑠*𝑗) (1− 𝛽𝑖𝑗(𝑠*𝑗))

(𝑢𝑖 (𝑞𝑗,𝑞−𝑗,𝑠𝑖*)− 𝑑𝑖𝑗(𝑞−𝑗,𝑠))
2−𝛽𝑖𝑗(𝑠*𝑗)

(︂
𝜕𝑢𝑖 (𝑞𝑗,𝑞−𝑗,𝑠𝑖*)

𝜕𝑞𝑗

)︂2

+
𝛽𝑖𝑗(𝑠*𝑗)

(𝑢𝑖 (𝑞𝑗,𝑞−𝑗,𝑠𝑖*)− 𝑑𝑖𝑗(𝑞−𝑗,𝑠))
1−𝛽𝑖𝑗(𝑠*𝑗)

𝜕2𝑢𝑖 (𝑞𝑗,𝑞−𝑗,𝑠𝑖*)

𝜕𝑞2𝑗
< 0,

by strict concavity of 𝑢𝑖 in 𝑞𝑗. Also, for every 𝑖, (𝑢𝑖 (𝑞𝑗,𝑞−𝑗,𝑠𝑖*)− 𝑑𝑖𝑗(𝑞−𝑗,𝑠))
𝛽𝑖𝑗(𝑠*𝑗) is

non-negative and not identically equal to zero over 𝐵𝑃
𝑗 . The results then follow from

Theorem 4 in Kantrowitz and Neumann (2005). Q.E.D.
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