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Abstract

A principal (he) evaluates an agent (she). He can perform a costly test that measures
a combination of the agent’s valuable qualities without revealing each quality sepa-
rately. The agent can present evidence on some qualities but not others. I call the
latter qualities talent. Although favorable, evidence can make the principal attribute
the test result to a certain quality, thereby negatively affecting his assessment of
the agent’s talent. Indeed, when the test is less sensitive to talent than talent is
valuable to the principal, a conflict arises between the two ways of evaluating the
agent: (i) testing and (ii) asking for evidence. The optimal mechanism makes two
types of errors, both favoring high- over low-evidence agents: (i) it rewards without
testing some unworthy high-evidence agents, and (ii) it rewards after testing some
unworthy moderate-evidence agents while rejecting some worthy low-evidence ones.
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1 Introduction

In many environments, a principal (he) needs to evaluate an agent (she) by using a test
that measures a combination of the agent’s (valuable) qualities—without revealing each
quality separately. The agent can present favorable evidence on some of her (verifiable)
qualities but has no evidence on other (unverifiable) qualities. Ideally, the principal would
like to evaluate the agent in two ways: (i) by testing her and (ii) by having her present
evidence. Both the test and evidence provide valuable information to the principal.

In principle, it is in the agent’s best interest to present all her evidence to convince the
principal of her verifiable qualities. However, by presenting evidence, the agent may affect
how the principal interprets the test result. Particularly, evidence on one quality may
make the principal attribute the test result—which measures a combination of the agent’s
qualities—to that quality, thereby negatively affecting the principal’s assessment of the
agent’s unverifiable qualities. Thus, testing may interfere with the agent’s incentives to
present evidence.

When does this conflict between the two ways of evaluating the agent arise? When it
does, should the principal try to resolve it or should he design incentives that induce the
agent to hide evidence? How should he test and evaluate the agent taking the conflict into
account? For example, should he in some cases refrain from testing so as not to interfere
with the agent’s incentives to present evidence? If so, in which cases? If he mostly values
the unverifiable qualities, should he be most skeptical and require a higher test score (i)
when the agent presents little evidence (possibly hiding some) or (ii) when she presents
a lot of evidence (indicating that the test result is to a large extent attributable to the
verifiable qualities, which the principal does not value much)? This is the kind of questions
that this paper aims to answer.

The conflict can arise in various settings where people are evaluated. A college applicant
may downplay her privileged background or how much effort she has exerted to paint her
academic performance and standardized test scores as results of her brilliance rather than
effort and high-quality education and get admitted by a college that values talent and
potential. For example, she can hide her background or how intensively she has studied
in the past by (i) overstating the struggles that she has gone through, (ii) not mentioning
tutoring, extracurricular activities, or participation in math contests that she did not win,
(iii) withholding information on her parents’ education and professions, or even (iv) hiding
her race.1 A job candidate may hide her privileged background and prior effort to make
the employer attribute her achievements and pre-employment test results to talent and
hire her. An employee may understate how long it took her to complete a task to make

1Indeed, in a 2021 survey, 34% of white Americans admitted to lying about being a racial minority on
their college application (see https://www.intelligent.com/34-of-white-college-students-lied-about-their-
race-to-improve-chances-of-admission-financial-aid-benefits). 48% of people who lied claimed to be Native
American, and 3/4 of those who lied were accepted by the colleges that they lied to.
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the employer attribute her productivity to ability (i.e., the rate at which her work hours
translate into value to the firm) and promote her. This strategy can pay off if promotion
decisions rely mostly on the employer’s beliefs over the employee’s ability (because in
the higher position, ability is—relative to working long hours—more important than in
the current position). A micro theorist on the academic job market may not present
some results that she has already derived in order to use them to answer the audience’s
questions, thereby making the hiring committee attribute her answers to intelligence and
ability to think on her feet and hire her.

This way of thinking is so fundamental that kids also seem to follow it. Students
often eagerly proclaim that they have not studied hard for an exam—not only if they
are informed of their substandard performance but also when they have performed
exceptionally well. By stressing their low effort (or even understating it) they may be
trying to have their score attributed to their (overstated) brilliance. Effortless perfection
(i.e., the need to seem perfect without apparent effort) and hiding one’s effort have been
documented among university students (Travers et al., 2015; Casale et al., 2016).

Despite how fundamental this way of thinking is, to the best of my knowledge, no
previous work has studied the problem of evaluating people when—in order to affect how
a combined signal of their various virtues is interpreted—they can hide evidence that both
(i) is in principle favorable to them and (ii) contains useful information to the evaluator. I
study the problem in the following setting. An agent (she) has a bidimensional type. The
first dimension is her evidence (e.g., a college or job applicant’s socioeconomic background,
effort, and training, an employee’s effort, a researcher’s knowledge) and the second is
her talent (e.g., a college or job applicant’s innate ability, an employee’s efficiency or
managerial skills, a researcher’s ability to think fast).2 The agent can verifiably disclose
any part of her evidence but cannot prove that she is not withholding evidence. She
cannot unilaterally prove anything about her talent, although she privately observes it.

The value of the agent to the principal (he) is non-decreasing in both her evidence
and her talent. The principal ultimately wants to make a binary choice: reward the agent
(and receive the value of the agent as payoff) or not (and receive payoff 0). He does so
by committing to a direct mechanism that conditional on (i) the evidence presented and
(ii) the cheap talk statement made by the agent about her talent, (possibly) tests the
agent at a cost and then decides whether to reward her. If performed, the test returns a
one-dimensional (deterministic) signal (i.e., the test score) of the agent’s bidimensional
type. The test score is increasing in both the agent’s evidence and talent. The agent

2Although plausibly endogenous in some cases (e.g., when an employer decides whether to promote an
employee), I solve the problem for exogenous evidence and then extend the model to allow for endogenous
evidence production. Section 5.3 shows that the structure of the optimal mechanism remains qualitatively
the same even if evidence is endogenous (i.e., produced by the agent before her interaction with the
principal), as long as the principal cannot influence evidence production by committing to a mechanism
before the agent produces evidence.
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wants to get rewarded independently of her type.
If the test score measures exactly what the principal values in an agent (and, thus,

the principal wants to reward the agent if and only if her test score is high enough), then
the test’s usefulness is apparent. But what happens if he values talent to a different
degree (relative to evidence) than the test measures talent (relative to evidence)? Or, in
economics jargon, what if his marginal rate of substitution between talent and evidence
differs from the marginal rate of substitution between the two in the test (i.e., holding
fixed the test score)?

The main result concerns the optimal screening mechanism when the test (score) is
less sensitive to talent than talent is valuable to the principal. The optimal mechanism
features double penalization of low-evidence agents, favoring high-evidence agents in two
ways: (i) it rewards some high-evidence agents—including undeserving ones (i.e., who
give the principal a negative payoff when rewarded)—without testing them but rather
only by asking them for a certain threshold level of evidence, and (ii) among agents that
do not meet that threshold level of evidence, it rewards (after testing) some undeserving
agents with high evidence but low talent while rejecting some deserving agents with high
talent but low evidence. Remarkably, this is the structure of the optimal mechanism in
the extreme case where the principal only values talent (i.e., his payoff for rewarding the
agent is increasing in talent and constant in evidence).3 The principal still optimally
favors high-evidence agents even though evidence is worthless to him. He does so (i) to
save in testing costs by rewarding high-evidence agents without testing them and (ii) to
reward (after testing) some deserving low-evidence agents by also testing and rewarding
some undeserving high-evidence agents, who can hide their high evidence to imitate the
more talented deserving agents.

I now discuss the results in more detail. A screening mechanism is incentive compatible
if and only if three conditions are satisfied. First, among agents with the same level of
evidence, an agent with higher talent should be rewarded with (weakly) higher probability
(than a less talented one), since she can successfully imitate an agent with (the same
amount of evidence but) lower talent given that the test score is increasing in talent.
Second, among agents with the same level of evidence, in order to reward a talented agent
with (strictly) higher probability (than a less talented one), the principal needs to test
the talented agent with high enough probability to prevent the less talented one from
posing as the more talented agent in the hope that she will be rewarded without a test.
Third, among agents with the same (potential) test score (i.e., the test score that they
will achieve if tested), an agent with higher evidence should be rewarded with (weakly)
higher probability, since she can hide (part of) her evidence and over-report her talent to
imitate an agent with the same test score, lower talent, and higher evidence.

3When the principal’s payoff for rewarding the agent only depends talent, the test is automatically
less sensitive to talent than talent is valuable to the principal.
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Given this characterization of incentive compatible mechanisms, I first study the
principal’s problem under free testing. If the test is more sensitive to talent than talent is
valuable to the principal, then testing does not create incentives for the agents to hide
evidence, so the principal’s problem is easy. By observing the agent’s test score and
evidence—which the agent presents fully—the principal learns the agent’s type, thereby
achieving the first-best. On the other hand, if the test is less sensitive to talent than
talent is valuable to the principal, then testing does create incentives for the agents to
hide evidence. The optimal mechanism makes two types of errors: (i) a Type I error of
rejecting some deserving agents with high talent but low evidence to avoid rewarding
undeserving agents with low talent but high evidence, and (ii) a Type II error of rewarding
some undeserving agents with high evidence in order to also reward deserving ones with
low evidence. The less sensitive the test is to talent, the larger the errors are.

The results capture a stark contrast in the difficulty of hiring different types of agents
employees. When verifiable qualities (which can be proven through hard evidence) are
most valuable, the hiring process is easy. On the other hand, when talent—which is
assessed by tests that are also sensitive to the candidate’s verifiable qualities, which the
candidate can hide—is most valuable, the hiring process is flawed, favoring candidates with
high-quality training and education at the expense of equally or more valuable candidates
with limited training.

Under costly testing, the optimal mechanism is as follows. If the test is less sensitive
to talent than talent is valuable to the principal, the principal gives the agent two paths
to getting rewarded: either (i) provide enough evidence to meet a certain threshold or (ii)
score high enough in the test without providing evidence.4 As in the case of free testing,
the optimal mechanism makes a Type I and a Type II error. The test score threshold
balances these two errors, while the evidence threshold captures the trade-off between
the benefit of testing (i.e., rejecting some unworthy high-evidence agents) to its cost. As
in the case of free testing, if the test is more sensitive to talent than talent is valuable
to the principal, then testing does not create incentives for the agents to hide evidence.
Every agent with at least a certain threshold of evidence is rewarded without a test, and
among agents that do not meet that threshold, an agent is rewarded (after testing) if and
only if her value to the principal is high enough to cover the testing cost. High-evidence
agents are favored only to the extent that their evidence is high enough to get them
rewarded without a test. Among agents who do not have such high levels of evidence,
the mechanism rewards every deserving agent—without favoring high- (or low-) evidence
agents.

The results have implications for hiring by prestigious employers (or, in general,
hiring for highly desirable positions), promotions, and college admissions. Consider,
first, hiring by a prestigious employer. Evidences is the candidate’s CV quality (e.g.,

4The first option need not always provided (e.g., when the testing cost is low enough).
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high school quality, undergraduate institution quality and GPA, awards, distinctions,
reference letters) as her evidence and talent is her ability and drive not captured by the
evidence. Testing amounts to letting a less prestigious employer hire the candidate—with
the option to poach the candidate later at a cost (after observing her performance in that
employer). In the optimal mechanism, Ivy-Leaguers are immediately hired by prestigious
employers, while worthy candidates with less impressive credentials have to go through
less prestigious employers to prove their worth before they land a prestigious position. If
the candidates’ performance in the less prestigious position is less sensitive to talent than
talent is valuable in the more prestigious position—an arguably reasonable assumption,
then worthy candidates with low credentials are at a disadvantage not only in the first
stage of hiring by the prestigious employer but also in the poaching stage.

In the context of promotions, evidence can be understood as the employee’s effort and
talent as her efficiency (i.e., the rate at which effort translates into productivity or value to
the firm) or managerial skills.5 Testing amounts to monitoring the employee’s productivity.
Then, the payoff to the principal from rewarding (i.e., promoting) the employee is the
difference between her productivity in the new position (if promoted) and her productivity
in her current position. The payoff is, as assumed, non-decreasing in effort and efficiency
if both effort and efficiency have a (weakly) higher marginal productivity in the higher
position. This can be naturally interpreted to mean that the higher position comes with
increased responsibilities that allow the employee’s effort and talent to have a larger
impact. It is also natural to think that talent is (relative to effort) more important in
the higher position than in the current one. Then, the test (i.e., current productivity)
is less sensitive to talent than talent is valuable to the employer, which means that
some hard-working employees are (optimally) promoted—either with or without their
productivity monitored—although their promotion destroys firm value. At the same time,
some talented but not hard-working employees are not promoted to managerial positions,
although their promotion would generate value for the firm.

Last, the results have implications for affirmative action in college admissions (i.e.,
trying to control for applicants’ unequal backgrounds). Affirmative action is not very
effective if both of the following conditions are satisfied: (i) college applicants can to
a large extent hide their privilege and (ii) standardized test scores reflect talent (e.g.,
relative to socioeconomic background and prior education, training, and test preparation)
less than colleges value talent. If both conditions hold, then the optimal admissions policy
requires roughly the same test score from every applicant for admission—regardless of
background. However, if any of the two condition fails, then affirmative action is effective,
and we should expect its reversal to significantly reduce diversity in college admissions.

After a discussion of related literature, section 2 presents the model. Section 3
5The employee has chosen effort in a previous stage (see section 5.3 for a discussion of endogenous

evidence production) and can show or hide how much effort she has exerted.
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characterizes incentive-compatible mechanisms and then solves the principal’s problem.
Section 4 discusses applications. Section 5 presents extensions of the model. Section 6
concludes. Proofs are gathered in Appendix A.

Related literature. My analysis contributes to the literature of multidimensional
screening (e.g., see Armstrong, 1996; Rochet and Choné, 1998; Rochet and Stole, 2003).
While duality approaches have proven useful in verifying a mechanism’s optimality (Rochet
and Choné, 1998; Carroll, 2017; Daskalakis et al., 2017; Cai et al., 2019), full characteriza-
tions of multidimensional screening problems remain challenging. Partial characterizations
have, for example, been obtained (i) for the case where the principal can use costly
instruments in screening (Yang, 2022) or (ii) that show when offering only the grand
bundle of all products is optimal for a multi-product monopolist (Haghpanah and Hartline,
2021). I contribute to this literature by proposing a novel bidimensional screening problem
and deriving a full characterization under general assumptions. I assume that the agent’s
type admits a full support density but impose no other restrictions on the type distribu-
tion. Also, I make no parametric assumptions on the principal’s preferences or testing
technology; they are only assumed to satisfy a single-crossing condition.6 My analysis
does not rely on ironing procedures (e.g., see Mussa and Rosen, 1978; Myerson, 1981;
Rochet and Choné, 1998) or the duality approach. Instead, I show that the principal’s
problem can be reduced to a maximization problem where the objective is a linear (and,
thus convex) and continuous functional and the domain is a (convex and compact) space
of monotone functions.7 Bauer’s maximum principle then implies that an extreme point
solves the problem.8 The proof then proceeds using properties of extreme points of spaces
of monotone functions. In that sense, my paper is also related to recent papers that
characterize extreme points of spaces of monotone functions (e.g., see Kleiner et al., 2021;
Yang and Zentefis, 2024) and then use Bauer’s Maximum Principle.

The paper has links to a few other strands of the literature.
It connects to the literature of persuasion games, where an sender discloses verifiable

information (i.e., her type) to a decision maker to influence his actions.9 When the sender
(e.g., seller) perfectly knows her type and can costlessly and verifiably disclose it to the
decision maker (e.g., buyer), whose payoff is increasing in the type, full unraveling emerges
in equilibrium: every sender type (except possibly the lowest one) discloses her quality
(Viscusi, 1978; Grossman, 1981; Milgrom, 1981). In my setting, this happens when the
principal only values the agent’s evidence.

6They are also assumed to be monotone, but this assumption is not made for tractability. Rather, it
captures the main force under study.

7For this result, it is important that the principal’s (final) choice is binary.
8Manelli and Vincent (2007) also use Bauer’s maximum principle to study a multi-dimensional screening

problem.
9See Milgrom (2008) for a review.
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It also has links to the literature on evidence games, where an agent chooses what
part of her verifiable evidence to disclose to the principal without being able to prove
whether she has hidden evidence (e.g., see Shin, 1994; Dziuda, 2011; Hart et al., 2017).
This literature several differences to mine. Most importantly, the principal cannot obtain
a signal of the agent’s type after she provides evidence.10

The ability of the principal to perform an experiment after the agent transmits
information is, for example, considered in Glazer and Rubinstein (2004), Carroll and
Egorov (2019), Bizzotto et al. (2020), Li (2020, 2021), Kattwinkel and Knoepfle (2023).
However, in Bizzotto et al. (2020), Li (2020), and Kattwinkel and Knoepfle (2023), the
agent’s type is one-dimensional. Even in Glazer and Rubinstein (2004), Carroll and Egorov
(2019), and Li (2021), where the agent’s type is multi-dimensional, testing by the principal
produces a signal that does not combine multiple dimensions but rather reveals one of the
dimensions. Therefore, the interpretation of the test result is not influenced by the agent’s
initial disclosure as in my model, where the substitutability between the two dimensions
is key.11

Nevertheless, the composite signal that the testing generates is not entirely new to the
economics literature. It is reminiscent of the signal jamming problem in career concern
models (e.g., see Holmström, 1999). Still, in these models the main force is the agent’s
incentives to exert effort in order to influence the principal’s learning (though costless
observation of the agent’s productivity) of the agent’s talent. Here, I focus on information
transmission and testing.12 I show that if the principal can ask for hard evidence of
effort, then the signal jamming problem is mitigated if productivity is sensitive enough to
talent—compared to the principal’s preferences for rewarding (e.g., promoting) the agent.
However, when productivity is not sensitive enough to talent, then the signal jamming
problem persists even if the principal can ask for evidence of effort. Agents have incentives
to withhold evidence, which they should be paid information rents to reveal.

The ability of the agent to influence the informational content of the designer’s signal
is considered in another strand of the literature. In Perez-Richet and Skreta (2022),
Frankel and Kartik (2019, 2022), and Ball (2024), the agent can manipulate the signal
at a cost.13 In my setting, withholding evidence does not manipulate the signal itself
but it can affect the informational content of the signal. The amount of evidence that

10There are more differences. For example, in Hart et al. (2017) the principal does not always prefer
more evidence to less and the agent can choose to withhold damaging evidence. Damaging evidence also
exists in Dziuda (2011), where the existence of a behavioral type is central, while in my model all agents
are strategic.

11Also, in Glazer and Rubinstein (2004) rather than providing verifiable evidence, the agent only sends
a cheap talk message. In Carroll and Egorov (2019), the principal has partial commitment power: he
can commit on testing but not on action (after testing) decisions. He can commit to an action only to
severely punish the agent.

12Another difference from career concerns models is that the principal chooses whether to test the
agent at a cost. Also, the principal is actually an employer without commitment power.

13In Frankel and Kartik (2022), the receiver has no commitment power.
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the agent possesses can then be interpreted as the ability of the agent to manipulate the
signal. This gaming ability is exogenous and fixed in Perez-Richet and Skreta (2022) but
stochastic and privately observed by the agent in Frankel and Kartik (2019, 2022) and
Ball (2024), like evidence is in my model. However, in my setting, evidence controls the
set of messages that the agent can send rather than how costly it is to send a certain
message. Also, unlike in models of costly signal manipulation, there is no pecuniary or
direct cost of hiding evidence in my model. Still, there is an endogenous cost of hiding
evidence given that the principal values evidence—unlike in the other models, where
gaming ability is not valuable to the principal—and chooses how to reward it through the
mechanism. These differences also set apart my setting from models of costly lying (e.g.,
Kartik, 2009; Sobel, 2020).

2 A model of bidimensional screening with substi-
tutable attributes

There are an agent (she) and a principal (he). The agent is privately informed of her
bidimensional type (𝑒,𝑡), which has a full-support density 𝑓 : [0,1]2 → R++. 𝑒 is the
agent’s evidence. An agent of type (𝑒,𝑡) can prove to the principal that her 𝑒 is at least 𝑟

for any 𝑟 ∈ [0,𝑒] by presenting evidence 𝑟 ∈ [0,𝑒]. If she reveals 𝑟 < 𝑒, we say that she
hides evidence. However, for no 𝑟 ∈ [0,1) can she prove that her 𝑒 is not higher than 𝑟; in
other words, she cannot prove that she is not withholding evidence. 𝑡 is the agent’s talent,
which she cannot unilaterally prove anything about. The principal can test the agent by
paying a cost 𝑐 ≥ 0.

The testing technology. The test is imperfect and works as follows.14 Testing the
agent amounts to observing a deterministic signal 𝜎(𝑒,𝑡) ∈ [0,1] of the agent’s type (𝑒,𝑡).
𝜎 : [0,1]2 → [0,1] is increasing and continuous in 𝑒 and 𝑡. The assumption of a deterministic
increasing signal is not uncommon. In fact, it is more general than the assumption that
the test reveals one of the dimensions of the agent’s type, which is for example made in
Glazer and Rubinstein (2004), Carroll and Egorov (2019), and Kattwinkel and Knoepfle
(2023).15

Payoffs. Ultimately, the principal wants to choose whether to reward the agent or
not. He receives (gross of testing costs) Bernoulli payoff 𝑢(𝑒,𝑡) from rewarding an agent

14Although called a test, this need not be a written test. For example, it can also be the agent’s
performance in an interview or her productivity as an employee.

15That is, if we allow 𝜎 to be constant in 𝑒 or 𝑡 (but not both). This case is easy to deal with but
uninteresting in our setting. If 𝜎 is constant in 𝑒 (and, thus, reveals 𝑡 exactly), then the optimal mechanism
is the same as under pro-𝑡 biased testing (see section 3). If 𝜎 is constant in 𝑡 (and, thus, reveals 𝑒 exactly),
then the test is useless, and there exists an optimal mechanism that only asks for evidence.
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of type (𝑒,𝑡), where 𝑢 : [0,1]2 → R is non-decreasing and continuous in 𝑒 and 𝑡. If
he does not reward the agent, he receives payoff normalized to 0. An isocurve of the
principal’s (gross) payoff is given by 𝐼𝑢(𝑢) := {(𝑒,𝑡) ∈ [0,1]2 : 𝑢(𝑒,𝑡) = 𝑢}.16 Define
also the (strict) upper and lower contour sets 𝐼↑

𝑢(𝑢) := {(𝑒,𝑡) ∈ [0,1]2 : 𝑢(𝑒,𝑡) > 𝑢} and
𝐼↓

𝑢(𝑢) := {(𝑒,𝑡) ∈ [0,1]2 : 𝑢(𝑒,𝑡) < 𝑢}, respectively. The agent’s Bernoulli payoff is equal to
1 if she gets rewarded and 0 if not.

Canonical examples. In a linear example, 𝑢(𝑒,𝑡) := 𝛾𝑢𝑒+(1−𝛾𝑢)𝑡−𝑞, where 𝛾𝑢 ∈ [0,1]
measures how much the principal values 𝑒 versus 𝑡, and 𝑞 ∈ (0,1) measures the threshold
quality that the agent needs to have to be of (positive) value to the principal. Similarly,
𝜎(𝑒,𝑡) := 𝛾𝑠𝑒 + (1 − 𝛾𝑠)𝑡, where 𝛾𝑠 ∈ (0,1) measures how sensitive the test is to 𝑒 relative
to 𝑡. In a Cobb-Douglas specification, 𝑢(𝑒,𝑡) := 𝑒𝛾𝑢𝑡1−𝛾𝑢 − 𝑞 and 𝜎(𝑒,𝑡) := 𝑒𝛾𝑠𝑡1−𝛾𝑠 with
𝛾𝑢 ∈ [0,1] and 𝛾𝑠,𝑞 ∈ (0,1). No parametric assumptions are imposed on 𝑢 or 𝜎 but for
simplicity in depiction, all figures use the linear parametrization.

The principal’s problem. To decide whether to reward the agent, the principal designs
(with commitment) a direct mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩ that specifies (i) the probability
𝑇 (𝑒,𝑡) ∈ [0,1] with which the principal will test the agent if she presents evidence 𝑒

and sends cheap talk message 𝑡 and (ii) the probability 𝑃 (𝑒,𝑡,𝑠), which should be non-
decreasing in 𝑠 ∈ [0,1], with which the principal will reward the agent after the agent
has presented evidence 𝑒, sent cheap talk message 𝑡, and the test has returned result
𝑠 ∈ [0,1].17 If no test is performed, 𝑠 = ∅ and the agent is rewarded with probability
𝑃 (𝑒,𝑡,∅). Notice that (𝑒,𝑡) refers to the message sent by the agent. When necessary to
avoid confusion, we will denote by (𝑒′,𝑡′) the agent’s message (i.e., evidence 𝑒′ presented
and cheap talk message 𝑡′ sent) to differentiate it from the agent’s type, which in those
cases will be denoted by (𝑒,𝑡). Overall, the principal chooses a mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩,
where 𝑇 : [0,1]2 → [0,1] and 𝑃 : [0,1]2 × ([0,1] ∪ {∅}) → [0,1] with 𝑃 (𝑒,𝑡,𝑠) non-decreasing
in 𝑠 ∈ [0,1], and an agent response rule 𝜑 : [0,1]2 → [0,1]2 to maximize

∫︁ 1

0

∫︁ 1

0

⎧⎨⎩
⎡⎣ 𝑇 (𝜑(𝑒,𝑡))𝑃 (𝜑(𝑒,𝑡), 𝜎(𝑒,𝑡))

+[1 − 𝑇 (𝜑(𝑒,𝑡))]𝑃 (𝜑(𝑒,𝑡), ∅)

⎤⎦ 𝑢(𝑒,𝑡) − 𝑐𝑇 (𝜑(𝑒,𝑡))

⎫⎬⎭ 𝑓(𝑒,𝑡)𝑑𝑡𝑑𝑒

subject to 𝜑(𝑒,𝑡) ∈ arg max(𝑒′,𝑡′)∈[0,𝑒]×[0,1] {𝑇 (𝑒′,𝑡′)𝑃 (𝑒′,𝑡′,𝜎(𝑒,𝑡)) + (1 − 𝑇 (𝑒′,𝑡′))𝑃 (𝑒′,𝑡′, ∅)},
which is the agent’s incentive compatibility (IC) constraint.18

16𝐼𝑢(𝑢) is assumed to be a curve for any 𝑢. This is the case if, for example, 𝑢(𝑒,𝑡) is increasing in 𝑒 or 𝑡.
17The condition that 𝑃 (𝑒,𝑡,𝑠) be non-decreasing in 𝑠 ∈ [0,1] can be understood as an incentive-

compatibility condition in a model where 𝜎(𝑒,𝑡) gives the maximum score that agent type (𝑒,𝑡) can achieve
but the agent can intentionally reduce her score.

18That the principal chooses 𝜑 : [0,1]2 → [0,1]2 respecting the IC constraint means that the principal
can break the agent’s indifferences in his favor.
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3 Optimal bidimensional screening with substitutable
attributes

This section characterizes incentive-compatible (IC) mechanisms and then solves the
principal’s problem.

3.1 Simplifying the class of mechanisms

Before characterizing IC mechanisms, we show that we can without loss restrict the class
of mechanisms that we need to consider.

Truthful mechanisms are without loss. The first simplification comes from the fact
that the principal can without loss of optimality restrict attention to truthful mechanisms
(i.e., mechanisms that induce truth-telling). To see why, notice that the correspondence
(𝑒,𝑡) ↦→ {(𝑒′,𝑡′) ∈ [0,1]2 : 𝑒′ ≤ 𝑒} (from the type space to the message space) that
determines the admissible messages for each agent type (𝑒,𝑡) satisfies the Nested Range
Condition (NRC) of Green and Laffont (1986), who show that under this condition,
the set of implementable social choice functions coincides with the set of truthfully
implementable social choice functions.19 Therefore, from now on, we restrict attention to
truthful mechanisms and define IC mechanisms as follows.

Definition 1. A mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩ is IC if for every (𝑒,𝑡) ∈ [0,1]2

(𝑒,𝑡) ∈ arg max
(𝑒′,𝑡′)∈[0,𝑒]×[0,1]

{𝑇 (𝑒′,𝑡′)𝑃 (𝑒′,𝑡′,𝜎(𝑒,𝑡)) + (1 − 𝑇 (𝑒′,𝑡′))𝑃 (𝑒′,𝑡′, ∅)} .

Pass-or-fail tests are without loss. Next, we can constrain attention to mechanisms
with threshold rewarding policies conditional on testing; that is, mechanisms such that

𝑃 (𝑒,𝑡,𝑠) =

⎧⎪⎨⎪⎩0 if 𝑠 < 𝜎(𝑒,𝑡)

𝑃𝑎𝑡(𝑒,𝑡) if 𝑠 ≥ 𝜎(𝑒,𝑡).
(1)

for any (𝑒,𝑡) for some 𝑃𝑎𝑡 : [0,1]2 → [0,1], where 𝑎𝑡 is a mnemonic for the probability of
rewarding the agent after testing (given that the threshold test score is met). If type (𝑒,𝑡)
reports her type truthfully and is tested, she is then rewarded with probability 𝑃𝑎𝑡(𝑒,𝑡).
Notice that the threshold is set exactly equal to the test score that a truthfully-reporting
agent can achieve. To see why constraining attention to such mechanisms is without loss

19Essentially, the principal implements a social choice function 𝑔 : [0,1]2 → [0,1]2 × [0,1][0,1], where
𝑔1(𝑒,𝑡) the probability of testing, 𝑔2(𝑒,𝑡) the probability of rewarding conditional on not testing, and
𝑔3(𝑒,𝑡,·) a self-map on [0,1] that (conditional on testing) maps the test result 𝑠 to the probability 𝑔3(𝑒,𝑡,𝑠)
of rewarding.
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of optimality, observe that among all mechanisms that (conditional on testing) reward
type (𝑒,𝑡) with probability 𝑃𝑎𝑡(𝑒,𝑡), the one that satisfies equation (1) minimizes incentives
of other types to imitate (𝑒,𝑡).20

Moreover, agents that meet the test score threshold are rewarded with certainty. To see
this, notice that the total probability with which agent (𝑒,𝑡) is rewarded if she truthfully
reports her type is equal to Π(𝑒,𝑡) := (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) + 𝑇 (𝑒,𝑡)𝑃𝑎𝑡(𝑒,𝑡), and define
outcome-equivalent mechanisms as follows.

Definition 2. A mechanism 𝑀 ′ ≡ ⟨𝑇 ′,𝑃 ′⟩ is outcome-equivalent to a mechanism 𝑀 ≡
⟨𝑇,𝑃 ⟩ if for every (𝑒,𝑡), Π(𝑒,𝑡) = Π′(𝑒,𝑡), where Π(𝑒,𝑡) ≡ (1−𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅)+𝑇 (𝑒,𝑡)𝑃𝑎𝑡(𝑒,𝑡)
and Π′(𝑒,𝑡) ≡ (1 − 𝑇 ′(𝑒,𝑡))𝑃 ′(𝑒,𝑡,∅) + 𝑇 ′(𝑒,𝑡)𝑃 ′

𝑎𝑡(𝑒,𝑡).

Lemma 1 shows that when testing is costly, an agent that is tested and passes the test
is rewarded with probability 1 in any optimal mechanism. When testing is free, it is still
without loss to constrain attention to mechanisms that reward the agent with probability
1 when she passes the test.

Lemma 1. Given any IC mechanism 𝑀 , there exists an IC mechanism 𝑀 ′ ≡ ⟨𝑇 ′,𝑃 ′⟩
with 𝑃 ′

𝑎𝑡(𝑒,𝑡) = 1 for every (𝑒,𝑡) that is outcome-equivalent to 𝑀 . Also, for 𝑐 > 0, in any
optimal mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩, 𝑃𝑎𝑡(𝑒,𝑡) = 1 for any (𝑒,𝑡) such that 𝑇 (𝑒,𝑡) > 0.21

The intuition behind this result is the following. The only reason to test an agent
before rewarding her—rather than reward her without a test—is to prevent others from
imitating her. The total probability with which each agent is rewarded is the sum of (i)
the probability (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) of getting rewarded without getting tested and (ii)
the probability 𝑇 (𝑒,𝑡)𝑃𝑎𝑡(𝑒,𝑡) of getting rewarded after getting tested (and passing the
test). Simply put, if the principal pays the cost to test an agent, he may as well assign
as large a part as possible of the total probability of rewarding her to the case where he
rewards her after a test.

Specifically, if agent (𝑒,𝑡) is not rewarded with certainty after passing the test (i.e.,
𝑃𝑎𝑡(𝑒,𝑡) < 1 and 𝑇 (𝑒,𝑡) > 0), then we can (i) increase the probability 𝑃𝑎𝑡(𝑒,𝑡) with which she
is rewarded conditional on getting tested (and passing the test), (ii) decrease the probability
𝑇 (𝑒,𝑡) with which she is tested, and (iii) decrease (if positive) the probability 𝑃 (𝑒,𝑡,∅) of
rewarding her conditional on not testing her, keeping fixed both (a) the probability (1 −
𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) of rewarding her without testing her and (b) the probability 𝑇 (𝑒,𝑡)𝑃𝑎𝑡(𝑒,𝑡)
of rewarding her after testing. By doing so, we (i) keep fixed the total probability Π(𝑒,𝑡)

20Namely, rewarding the agent further for performing above 𝜎(𝑒,𝑡) will result in the same probability
of rewarding type (𝑒,𝑡) after testing her and only give additional incentives to other agents to imitate
(𝑒,𝑡). Similarly, there is no reason to reward the agent for test scores lower than 𝜎(𝑒,𝑡). Particularly, this
argument holds when we compare all mechanisms that test (𝑒,𝑡) with the same probability, and, thus
have the same testing costs.

21Strictly put, 𝑃𝑎𝑡(𝑒,𝑡) can be lower than 1 for a zero-measure set of (𝑒,𝑡) with 𝑇 (𝑒,𝑡) > 0.
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of rewarding (𝑒,𝑡), (ii) do not change the incentives of other types to imitate (𝑒,𝑡), since
any agent imitating (𝑒,𝑡) will be rewarded with probability (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) (if she
only has at least as much evidence as (𝑒,𝑡) but cannot test as high as her) or Π(𝑒,𝑡) (if
she can also test as high as (𝑒,𝑡)), and (iii) reduce the probability of testing (𝑒,𝑡), thereby
limiting testing costs. Thus, from now on, we constrain attention to mechanisms with
𝑃𝑎𝑡(𝑒,𝑡) = 1 for any (𝑒,𝑡).22

Untalented agents do not need to be tested. Lemma 2 shows that we can further
simplify the analysis by constraining attention to mechanisms where agents with zero
talent are never tested.

Lemma 2. Given any IC mechanism 𝑀 , there exists an IC mechanism 𝑀 ′ ≡ ⟨𝑇 ′,𝑃 ′⟩
with 𝑇 ′(𝑒,0) = 0 for every 𝑒 that is outcome-equivalent to 𝑀 and has the same (expected)
testing cost as 𝑀 .

Here is the intuition behind this result. The only reason to test an agent before
rewarding her—rather than reward her without a test—is to prevent others from imitating
her. But any agent (𝑒′,𝑡′) who has sufficient evidence (i.e., 𝑒′ ≥ 𝑒) to imitate an agent
(𝑒,0) with no talent can also score (if tested) at least as high as the untalented agent
(𝑒,0), since the test score is increasing in 𝑒 and 𝑡. Therefore, there is no point in testing
untalented agents, as doing so does not reduce incentives of others to imitate them.23

3.2 Incentive-compatible mechanisms

Given what we have seen, we constrain attention to truthful mechanisms with pass-or-
fail tests where untalented agents are never tested. Let 𝜏(𝑒,𝑠) be implicitly given by
𝜎(𝑒,𝜏(𝑒,𝑠)) = 𝑠. 𝜏(𝑒,𝑠) gives the level of talent that an agent with evidence 𝑒 should have
to achieve test score (exactly) 𝑠. 𝜏(𝑒,𝑠) is well-defined for (𝑒,𝑠) such that 𝑠 ∈ [0,1] and
𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)], where 𝑒(𝑠) := min{𝑒 ∈ [0,1] : 𝜎(𝑒,1) ≥ 𝑠} and 𝑒(𝑠) := max{𝑒 ∈ [0,1] :
𝜎(𝑒,0) ≤ 𝑠}.24 Proposition 1 then characterizes IC mechanisms.

Proposition 1. A mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩ is IC if and only if

(i) Π(𝑒,𝑡) is non-decreasing in 𝑡 for every 𝑒,

(ii) Π(𝑒, 𝜏(𝑒,𝑠)) is non-decreasing in 𝑒 over 𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)] for every 𝑠 ∈ [0,1], and
22For (𝑒,𝑡) with 𝑇 (𝑒,𝑡) = 0, the value of 𝑃𝑎𝑡(𝑒,𝑡) does not matter, so we can again set 𝑃𝑎𝑡(𝑒,𝑡) = 1

without loss.
23Of course, agents with 𝑡 = 0 are a zero-measure set. Thus, even if testing is costly, the principal

could optimally test them. However, restricting attention to mechanisms with 𝑇 (𝑒,0) = 0 for every 𝑒
helps simplify notation.

24𝑒(𝑠) (resp. 𝑒(𝑠)) is the minimum (resp. maximum) level of evidence that an agent can have while
achieving test score at least (resp. at most) 𝑠. That is, agents with evidence lower than 𝑒(𝑠) score less
than 𝑠 even if they have talent 𝑡 = 1. Analogously, agents with evidence higher than 𝑒(𝑠) score more
than 𝑠 even if they have talent 𝑡 = 0.

13



(iii) (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) ≤ Π(𝑒,0) for every (𝑒,𝑡),

where Π(𝑒,𝑡) ≡ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) + 𝑇 (𝑒,𝑡) is the probability with which agent (𝑒,𝑡) is
rewarded if she truthfully reveals her type.

Figure 1 schematically summarizes IC conditions (i) and (ii) of Proposition 1.
Condition (i) is necessary and sufficient to ensure that an agent (𝑒,𝑡) does not want to

reveal her evidence but under-report her talent to imitate agent (𝑒,𝑡′) with 𝑡′ < 𝑡, pass
(𝑒,𝑡′)’s test (since the test score is increasing in talent), and get rewarded with probability
Π(𝑒,𝑡′).

Condition (iii) is necessary and sufficient to ensure that no untalented agent (𝑒,0)
has incentives to over-report her talent, imitating an agent (𝑒,𝑡)—whose test score she
cannot achieve—and possibly getting rewarded in case she is not tested. Put differently,
among agents with the same level of evidence 𝑒, in order to reward talented agents more
frequently (than the untalented agent (𝑒,0)), the principal needs to test them with high
enough probability to prevent agent (𝑒,0) from imitating them. Conditions (i) and (iii)
combined also imply that Π(𝑒,𝑡) ≥ Π(𝑒,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) for every (𝑒,𝑡), so no
agent has incentives to present all her evidence but overstate her talent.

Last, condition (ii) is necessary and sufficient to ensure that agents do not want to hide
some of their evidence in order to overstate their talent, thereby imitating agents whose
test score they can achieve. Namely, an agent (𝑒,𝑡) does not want to imitate an agent
(𝑒′,𝑡′) with less evidence 𝑒′ < 𝑒, more talent 𝑡′ > 𝑡, and equal test score 𝜎(𝑒′,𝑡′) = 𝜎(𝑒,𝑡)
in order to get rewarded with probability Π(𝑒′,𝑡′) instead of Π(𝑒,𝑡). Notice that for any
possible level of evidence 𝑒′ < 𝑒 that agent (𝑒,𝑡) may reveal, if it is not profitable for
(𝑒,𝑡) to overstate her talent so much that she will fail the test if tested, then because of
condition (i), she will want to overstate her talent as much as possible (making sure that
she will be able to pass the test), up to the point where 𝜎(𝑒′,𝑡′) = 𝜎(𝑒,𝑡).

We have so far seen that conditions (i), (ii), and (iii) are necessary and sufficient for
the agent not to have incentives to deviate in any of the following three ways: (a) present
all her evidence but under-report her talent, (b) present all her evidence but overstate
her talent, or (c) hide some of her evidence and overstate her talent, imitating agents
whose test score she can achieve. To see why they are necessary and sufficient for IC,
it remains to observe that these conditions also rule out the fourth type of deviations
by the agent: hiding evidence and overstating talent to imitate agents whose test score
she cannot achieve. To see this, notice that conditions (i), (ii), and (iii) combined imply
that Π(𝑒,𝑡) ≥ Π(𝑒,0) ≥ Π(𝑒′,0) ≥ (1 − 𝑇 (𝑒′,𝑡′))𝑃 (𝑒′,𝑡′,∅) for any 𝑒′ < 𝑒,25 ensuring that
(𝑒,𝑡) does not want to hide evidence and overstate her talent so much (to a point where
𝜎(𝑒′,𝑡′) > 𝜎(𝑒,𝑡)) that she fails the test.

25The second inequality follows from conditions (i) and (ii) combined.
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Figure 1: Directions of (weak) increase in Π(𝑒,𝑡) in IC mechanisms

0 1

1

𝐼𝜎(𝑠)

𝑒

𝑡

Note: the arrowed lines show the directions in which Π(𝑒,𝑡) is non-decreasing in IC mechanisms.

Condition (iii) of Proposition 1 is satisfied with equality. Lemma 3 shows that
when testing is costly and some talented agents are (optimally) rewarded with higher
probability than untalented ones with the same level of evidence, then the optimal
mechanism satisfies condition (iii) of Proposition 1 with equality. Under free testing or
when it is not optimal to reward talented agents with higher probability, it is still without
loss to constrain attention to mechanisms that satisfy condition (iii) of Proposition 1 with
equality.

Lemma 3. Given any IC mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩, there exists an IC mechanism 𝑀 ′ ≡
⟨𝑇 ′,𝑃 ′⟩ with (1 − 𝑇 ′(𝑒,𝑡))𝑃 ′(𝑒,𝑡,∅) = Π′(𝑒,0) for every (𝑒,𝑡) that is outcome-equivalent to
𝑀 and has at most as high testing costs as 𝑀 . For 𝑐 > 0, if also Π(𝑒,𝑡) > Π(𝑒,0) for a
positive measure of agent types, then 𝑀 ′ has lower testing costs than 𝑀 .

Here is the intuition behind this result. Take any IC mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩. When
Π(𝑒,0) > (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅), it means that untalented agent (𝑒,0) strictly prefers to not
overstate her talent. This strict preference is due to overtesting of talented agents. Namely,
𝑇 (𝑒,𝑡) can be reduced and 𝑃 (𝑒,𝑡,∅) can be increased keeping Π(𝑒,𝑡) ≡ (1−𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅)+
𝑇 (𝑒,𝑡) fixed and increasing (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) maintaining (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) ≤ Π(𝑒,0),
so that condition (iii) of Proposition 1 is still satisfied. Conditions (i) and (ii) of Proposition
1 are also still satisfied since Π does not change. Then, talented agents are tested with
lower but high enough probability to prevent untalented agents from imitating them.

From now on, we constrain attentions to mechanisms with (1−𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) = Π(𝑒,0),
or equivalently, Π(𝑒,𝑡) = Π(𝑒,0) + 𝑇 (𝑒,𝑡), for every (𝑒,𝑡). Given that untalented agents are
never tested, condition (iii) being satisfied with equality means that (1−𝑇 (𝑒,0))𝑃 (𝑒,0,∅) =
Π(𝑒,0) = (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) for every (𝑒,𝑡); that is, the probability of rewarding an agent
without a test depends only on presented evidence. The total probability of rewarding the
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agent has two components: (i) a base probability Π(𝑒,0) of rewarding the agent for her
evidence without a test and (ii) an additional probability 𝑇 (𝑒,𝑡) of rewarding the agent
for her talent, which (through testing) allows her to differentiate herself from less talented
agents with the same level of evidence.

3.3 Optimal screening under free testing

We are now ready to characterize the optimal mechanisms under free testing (i.e., 𝑐 = 0).
The principal’s objective function is

∫︀ 1
0

∫︀ 1
0 Π(𝑒,𝑡)𝑢(𝑒,𝑡)𝑓(𝑒,𝑡)𝑑𝑡𝑑𝑒, which can be written as

∫︁ 1

0

∫︁ 𝑒(𝑠)

𝑒(𝑠)
Π(𝑒,𝜏(𝑒,𝑠))𝑢(𝑒,𝜏(𝑒,𝑠))𝑓(𝑒,𝜏(𝑒,𝑠))𝑑𝑒𝑑𝑠, (2)

where instead of integrating over 𝑒 and 𝑡, we integrate over (test score level) 𝑠 and 𝑒.
The principal’s problem amounts to choosing Π(𝑒, 𝜏(𝑒,𝑠)), seen as a function of (𝑒,𝑠)
instead of (𝑒,𝑡), non-decreasing in 𝑠 (condition (i) of Proposition 1) and 𝑒 (condition (ii)
of Proposition 1) to maximize (2), which is linear (and, thus, convex) in Π.26 Bauer’s
maximum principle then implies that there exists an extreme Π (i.e., an extreme point of
the space of non-decreasing functions from {(𝑒,𝑠) ∈ [0,1]2 : 𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)]} to [0,1]) that
maximizes (2). It is an extension of Lemma 2.7 in Börgers (2015) that an extreme Π
maps each agent to either 0 or 1.

Lemma 4. Let 𝑐 = 0. There exists an optimal deterministic mechanism (i.e., an optimal
mechanism where Π(𝑒,𝑡) ∈ {0,1} for all (𝑒,𝑡)).

3.3.1 Testing technology biased in favor of talent

We are now ready to derive the optimal mechanism. Consider first the case where the
testing technology is biased in favor of talent in the sense that the test is more sensitive
to talent than talent is valuable to the principal.27

Definition 3. 𝜎 is pro-𝑡 biased if for every test score 𝑠 ∈ [0,1] there exists 𝑒𝑠 such that if
𝑒 > 𝑒𝑠 (resp. 𝑒 < 𝑒𝑠) and 𝜎(𝑒,𝑡) = 𝑠, then 𝑢(𝑒,𝑡) > 𝑐 (resp. 𝑢(𝑒,𝑡) < 𝑐).

This is a single-crossing condition. It says that iso-test-score curves cross the principal’s
indifference curve “from below.” Here is the intuition behind the definition. Because the
test is overly sensitive to talent, it is too generous towards those with high talent and

26Condition (iii) of Proposition 1 is immaterial, since testing is free. As implied by Lemma 3, any
Π that satisfies conditions (i) and (ii) of Proposition 1 can be implemented with 𝑇 and 𝑃 such that
(1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) = Π(𝑒,0) for every (𝑒,𝑡). However, there are many other ways to implement any Π
that satisfies conditions (i) and (ii). For example, setting 𝑃 (𝑒,𝑡,∅) = 0 and 𝑇 (𝑒,𝑡) = Π(𝑒,𝑡) for every (𝑒,𝑡)
(i.e., nobody is ever rewarded without a test) automatically satisfies condition (iii) of Proposition 1.

27We define pro-𝑡 biased testing for any testing cost 𝑐. The optimal mechanism under costly testing is
studied in section 3.4.
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low evidence and too strict towards those with low talent and high evidence. Therefore,
among all agents with the same test score (if tested), the principal wants to reward those
with high but not those with low evidence.

Clearly, if the principal’s payoff from rewarding the agent is increasing along iso-test-
score curves, then 𝜎 is pro-𝑡 biased. This is the case if the principal’s MRS of talent for
evidence is higher (in absolute value) than the test’s MRS of talent for evidence.

Claim 1. If 𝑢(𝑒,𝜏(𝑒,𝑠)) is increasing in 𝑒 over 𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)] for every 𝑠 ∈ [0,1], then 𝜎 is
pro-𝑡 biased (for any 𝑐). The condition is satisfied if 𝜕𝑢(𝑒,𝑡)/𝜕𝑒

𝜕𝑢(𝑒,𝑡)/𝜕𝑡
> 𝜕𝜎(𝑒,𝑡)/𝜕𝑒

𝜕𝜎(𝑒,𝑡)/𝜕𝑡
for every (𝑒,𝑡).

Proposition 2 shows that when testing is (i) free and (ii) pro-𝑡 biased, then the principal
can achieve the full information benchmark.

Proposition 2. Let 𝑐 = 0, and assume that 𝜎 is pro-𝑡 biased. Then, Π(𝑒,𝑡) = I (𝑢(𝑒,𝑡) ≥ 0)
is IC, so the principal achieves the full information first-best.28

When the principal only values evidence, he can trivially achieve the first best—much
like in the case where talent was absent from the model. Namely, rewarding every agent
with sufficient evidence to be of positive value to the principal is IC, because it does not
create incentives for agents to understate their evidence and/or overstate their talent as
only evidence is rewarded. Similarly, if the principal also values talent but less strongly
than the test score depends on talent, agents do not have incentives to hide evidence in
order to overstate their talent when the principal rewards every agent of positive value.
Figure 3(a) presents the optimal mechanism under pro-𝑡 biased testing.

A way for the principal to implement the first-best Π (and the one that we have
restricted attention to given Lemma 3) is by setting 𝑇 (𝑒,𝑡) = I(𝑢(𝑒,𝑡) ≥ 0 ∧ 𝑢(𝑒,0) < 0)
and 𝑃 (𝑒,𝑡,∅) = I(𝑢(𝑒,0) ≥ 0). That is, agents that are not valuable to the principal
truthfully report their type and are neither tested nor rewarded. Agents that are valuable
but cannot prove so by presenting evidence 𝑒 such that 𝑢(𝑒,0) > 0 (which would prove
that even if they have 𝑡 = 0, they are valuable) are tested and then rewarded. Finally,
agents that can prove that they are valuable by presenting evidence 𝑒 such that 𝑢(𝑒,0) ≥ 0
do so and are rewarded without a test. Clearly, since testing is free, 𝑇 (𝑒,𝑡) = I(𝑢(𝑒,𝑡) ≥ 0)
and 𝑃 (𝑒,𝑡,∅) = 0 for every (𝑒,𝑡) is, for example, also optimal (and differs from the former
implementation if there exists 𝑒 such that 𝑢(𝑒,0) ≥ 0), as is testing every agent and
rewarding only the valuable ones.

3.3.2 Testing technology biased in favor of evidence

Consider now the case where the testing technology is biased in favor of evidence in
the sense that the test is more sensitive to evidence than evidence is valuable to the

28By assumption, {(𝑒,𝑡) ∈ [0,1]2 : 𝑢(𝑒,𝑡) = 0} is a zero-measure set, so Π(𝑒,𝑡) = I (𝑢(𝑒,𝑡) > 0) and
Π(𝑒,𝑡) = I (𝑢(𝑒,𝑡) ≥ 0) are both optimal.
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principal.29

Definition 4. 𝜎 is pro-𝑒 biased if for every test score 𝑠 ∈ [0,1] there exists 𝑒𝑠 such that if
𝑒 < 𝑒𝑠 (resp. 𝑒 > 𝑒𝑠) and 𝜎(𝑒,𝑡) = 𝑠, then 𝑢(𝑒,𝑡) > 𝑐 (resp. 𝑢(𝑒,𝑡) < 𝑐).

This is again a single-crossing condition. It says that iso-test-score curves cross the
principal’s indifference curve “from above.” Here is the intuition behind the definition.
Because the test is overly sensitive to evidence, it is too generous towards those with high
evidence and low talent and too strict towards those with low evidence and high talent.
Therefore, among all agents with the same test score (if tested), the principal wants to
reward those with low but not those with high evidence.

Clearly, if the principal’s payoff from rewarding the agent is decreasing along iso-test-
score curves, then 𝜎 is pro-𝑒 biased. This is the case if the principal’s MRS of talent for
evidence is lower (in absolute value) than the test’s MRS of talent for evidence.

Claim 2. If 𝑢(𝑒,𝜏(𝑒,𝑠)) is decreasing in 𝑒 over 𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)] for every 𝑠 ∈ [0,1], then 𝜎 is
pro-𝑒 biased (for any 𝑐). The condition is satisfied if 𝜕𝑢(𝑒,𝑡)/𝜕𝑒

𝜕𝑢(𝑒,𝑡)/𝜕𝑡
< 𝜕𝜎(𝑒,𝑡)/𝜕𝑒

𝜕𝜎(𝑒,𝑡)/𝜕𝑡
for every (𝑒,𝑡).

It is easy to see that the first-best is no longer achievable even if testing is free (i.e.,
𝑐 = 0).30 Indeed, Figure 2 shows that rewarding (almost) every agent with 𝑢(𝑒,𝑡) > 0
and (almost) no agent with 𝑢(𝑒,𝑡) < 0 is not IC, as it creates incentives for agents with
𝑢(𝑒,𝑡) > 0 to hide evidence and imitate more talented and valuable agents.

But what can actually be achieved when the test is less sensitive to talent than talent
is valuable to the principal?

Proposition 3 describes the optimal mechanism when testing is (i) free and (ii) pro-𝑒
biased.

Proposition 3. Let 𝑐 = 0, and assume that 𝜎 is pro-𝑒 biased. Then, there exists an
optimal mechanism with Π(𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠*).

Proposition 3 shows that in the optimal mechanism, agent (𝑒,𝑡) is rewarded if and
only if 𝜎(𝑒,𝑡) ≥ 𝑠*. An optimal way to implement this Π (and the one that we have
restricted attention to given Lemma 3) is by setting 𝑇 (𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠* ∧ 𝑒 ≤ 𝑒(𝑠*))
and 𝑃 (𝑒,𝑡,∅) = I(𝑒 > 𝑒(𝑠*)). That is, agents that cannot achieve test score (at least) 𝑠*

truthfully report their type and are neither tested nor rewarded. Agents that can achieve
that test score and cannot prove this by presenting evidence 𝑒 > 𝑒(𝑠*) (which would prove
that even if they have 𝑡 = 0, they can achieve test score 𝑠*) are tested and then rewarded.

29We define pro-𝑒 biased testing for any testing cost 𝑐. The optimal mechanism under costly testing is
studied in section 3.4.

30𝜎 being pro-𝑒 biased is not necessary for this conclusion. The conclusion still applies as long as the
conditions in definition 4 is satisfied for a positive measure of 𝑠 ∈ [0,1].
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Figure 2: Not achieving the first-best: testing technology biased in favor of evidence

(a) Only talent valuable to the principal

0 1

1

𝐼𝜎(𝑠)
𝐼(𝑢,0)

𝑒

𝑡

(b) Test less sensitive to talent than talent valuable
to the principal

0 1

1

𝐼𝜎(𝑠)𝐼𝑢(0)

𝑒

𝑡

Note: the arrowed lines represent the directions of (weak) increase in Π(𝑒,𝑡) in any IC mechanism.
The dashed lines represent the principal’s indifference curve 𝐼𝑢(0).

Finally, agents that can prove that they can meet the test score threshold by presenting
evidence 𝑒 ≥ 𝑒(𝑠*) do so and are rewarded without a test.31

Finding the optimal mechanism is remarkably simple. It amounts to solving a one-
dimensional optimization problem on a closed interval with a continuous objective function.
The principal needs to find 𝑠* ∈ arg max̃︀𝑠∈[0,1] 𝑣(̃︀𝑠), where

𝑣(̃︀𝑠) :=
∫︁ 1

̃︀𝑠
∫︁ 𝑒(𝑠)

𝑒(𝑠)
𝑢(𝑒,𝜏(𝑒,𝑠))𝑓(𝑒,𝜏(𝑒,𝑠))𝑑𝑒𝑑𝑠

is continuous in ̃︀𝑠.32 When 𝑠* ∈ (0,1), it solves
∫︀ 𝑒(𝑠*)

𝑒(𝑠*) 𝑢(𝑒,𝜏(𝑒,𝑠*))𝑓(𝑒,𝜏(𝑒,𝑠*))𝑑𝑒 = 0. The
principal effectively chooses a threshold test score 𝑠* and rewards every agent that can
achieve this score. In choosing this threshold, he balances the Type I (i.e., rejecting agents
in 𝐼↑

𝑢(0)) and Type II (i.e., accepting agents in 𝐼↓
𝑢(0)) errors. This trade-off can be seen in

Figure 3(b).
Here is a sketch of the proof of Proposition 3. Because 𝜎 is pro-𝑒 biased, for any

two types of zero value to the principal (𝑒,𝑡),(𝑒′,𝑡′) ∈ 𝐼𝑢(0) with 𝑒′ > 𝑒, 𝜎(𝑒′,𝑡′) ≥ 𝜎(𝑒,𝑡).
But then, if 𝜎(𝑒′,𝑡′) ≥ 𝜎(𝑒,𝑡) and 𝑒′ > 𝑒, then IC requires Π(𝑒′,𝑡′) ≥ Π(𝑒,𝑡). In other
words, Π(𝑒,𝑡) has to be non-decreasing as 𝑒 increases along the 𝐼𝑢(0) curve. Therefore,
in any deterministic IC mechanism, there exists a threshold type on the 𝐼𝑢(0) curve

31Clearly, since testing is free, 𝑇 (𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠*) and 𝑃 (𝑒,𝑡,∅) = 0 for every (𝑒,𝑡) is, for example,
also optimal (and differs from the former implementation if 𝑒(𝑠*) < 1), as is testing every agent and
rewarding only those that pass the test score threshold 𝑠*.

32The principal’s problem reduces to this because all mechanisms with Π(𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠*) and
appropriate 𝑇 are IC.
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such that agents on the 𝐼𝑢(0) curve with more (resp. less) evidence than the threshold
type are rewarded (resp. not rewarded). Next, observe that IC requires that Π(𝑒,𝑡) be
non-decreasing along iso-test-score curves. Thus, having fixed Π(𝑒,𝑡) along the 𝐼𝑢(0) curve,
keeping Π(𝑒,𝑡) constant along iso-test-score curves maximizes the principal’s payoff. That
is because, on the part of an iso-test-score curve that lies below (resp. above) 𝐼𝑢(0), the
principal wants to make Π(𝑒,𝑡) as low (resp. high) as possible but is constrained to set
Π(𝑒,𝑡) at least (resp. most) equal to its value on the curve 𝐼𝑢(0) for that specific test score
level. Condition (i) of Proposition 1 is automatically satisfied.

Discussion. When seen against the results under pro-𝑡 biased testing (see Proposition
2), Proposition 3 reveals a stark contrast in the difficulty of, for example, hiring different
types of employees. When skills and knowledge that can be proven through hard evidence
are most valuable, the hiring process is easy. On the other hand, when talent—which
is assessed by tests and interviews that are also sensitive to the candidate’s training
and knowledge—is most valuable, the hiring process is flawed, favoring some unworthy
candidates with advanced training at the expense of agents with limited training who are,
however, more valuable to the firm.

The revealed difference in the difficulty of hiring talented versus well-trained employees
can be partly the reason behind the fact that firm survival rates increase with firm age
and size (Evans, 1987; Dunne and Hughes, 1994; Farinas and Moreno, 2000; Agarwal and
Gort, 2002; Bartelsman et al., 2005). To the extent that start-ups firms often face new
challenges without the established procedures or clearly defined roles of older and larger
firms, the success of a start-up will depend crucially on the ability of its employees to
adapt and learn new tasks fast (i.e., 𝑢(𝑒,𝑡) is very sensitive to 𝑡). On the other hand, the
continued success of an established firm—where each employee’s tasks are more clearly
and narrowly defined—will depend (relatively) more on employee training, knowledge,
and expertise (i.e., 𝑢(𝑒,𝑡) is relatively more sensitive to 𝑒). Thus, hiring should be harder
in start-ups than in established firms.

3.4 Optimal screening under costly testing

We now allow for a positive testing cost 𝑐 > 0. The principal now needs compare the benefit
of testing to its cost. The benefit of testing is that it increases rewarding accuracy: it
allows the principal to reward talented agents with higher probability that untalented ones.
The principal’s objective function is

∫︀ 1
0

∫︀ 1
0 [Π(𝑒,𝑡)𝑢(𝑒,𝑡) − 𝑐𝑇 (𝑒,𝑡)] 𝑓(𝑒,𝑡)𝑑𝑡𝑑𝑒. By Lemma

3, condition (iii) of Proposition 1 is satisfied with equality by the optimal mechanism, so
in the objective function we can substitute 𝑇 (𝑒,𝑡) = Π(𝑒,𝑡) − Π(𝑒,0). Then, the objective
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Figure 3: The optimal mechanism under free testing

(a) Pro-𝑡 biased testing

0 1

1

not rewarded,
no test necessary

rewarded with test

𝐼𝑢(0)

𝐼𝜎(𝑠)

𝑒
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(b) Pro-𝑒 biased testing
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𝑒(𝑠*)
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rewarded with test

Type I error

Type II error

𝐼𝜎(𝑠*)

𝐼𝑢(0)

𝑒
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Note: the dashed line represents the principal’s indifference curve 𝐼𝑢(0); the arrowed line
represents an iso-test-score curve (at an arbitrary level 𝑠 in the left panel and at level 𝑠* in the
right panel). The green (resp. red) area denotes the set of agents that are rewarded (resp. not
rewarded) in the optimal mechanism. The Type I error corresponds to the part of the red area
that lies above the dashed line. The Type II error corresponds to the part of the green area that
lies below the dashed line.

function reads
∫︁ 1

0

∫︁ 𝑒(𝑠)

𝑒(𝑠)
[Π(𝑒,𝜏(𝑒,𝑠))(𝑢(𝑒,𝜏(𝑒,𝑠)) − 𝑐) + 𝑐Π(𝑒,0)] 𝑓(𝑒,𝜏(𝑒,𝑠))𝑑𝑒𝑑𝑠, (3)

which is again linear in Π, so by Bauer’s maximum principle, there exists an extreme
Π—among all Π that are non-decreasing in 𝑠 and 𝑒—that solves the principal’s problem.

Lemma 5. There exists an optimal deterministic mechanism (i.e., an optimal mechanism
where Π(𝑒,𝑡) ∈ {0,1} for all (𝑒,𝑡)).

3.4.1 Testing technology biased in favor of talent

Proposition 4 characterizes the optimal mechanism under pro-𝑡 biased and costly testing.

Proposition 4. If 𝜎 is pro-𝑡 biased, then there exists an optimal mechanism with
Π(𝑒,𝑡) = I(𝑢(𝑒,𝑡) ≥ 𝑐 or 𝑒 ≥ 𝑒*) and 𝑇 (𝑒,𝑡) = I(𝑢(𝑒,𝑡) ≥ 𝑐 and 𝑒 < 𝑒*) for some 𝑒* ∈ [0,1].

The principal’s problem amounts to choosing a threshold level of evidence 𝑒* ∈
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arg max̃︀𝑒∈[0,1] 𝑣(̃︀𝑒),33 where

𝑣(̃︀𝑒) :=
∫︁ 1

0

∫︁ ̃︀𝑒
0

(𝑢(𝑒,𝑡) − 𝑐)I(𝑢(𝑒,𝑡) ≥ 𝑐)𝑓(𝑒,𝑡)𝑑𝑒𝑑𝑡 +
∫︁ 1

0

∫︁ 1

̃︀𝑒 𝑢(𝑒,𝑡)𝑓(𝑒,𝑡)𝑑𝑒𝑑𝑡.

Every agent with evidence 𝑒 ≥ 𝑒* evidence is rewarded without a test, while agents with
evidence 𝑒 < 𝑒* are tested and rewarded if their value 𝑢(𝑒,𝑡) to the principal is higher
than the cost 𝑐 of testing. The remaining agents are neither tested nor rewarded. Figure
4(a) presents the structure of the optimal mechanism.

When 𝑒* ∈ (0,1), the first-order condition is

𝑣′(𝑒*) =
∫︁ 1

0
(𝑢(𝑒*,𝑡) − 𝑐)I(𝑢(𝑒*,𝑡) ≥ 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡 −

∫︁ 1

0
𝑢(𝑒*,𝑡)𝑓(𝑒*,𝑡)𝑑𝑡 =0,

or equivalently

𝑣′(𝑒*) =

>0: gain from rejection of unworthy agents (ii)⏞  ⏟  
−

∫︁ 1

0
𝑢(𝑒*,𝑡)I(𝑢(𝑒*,𝑡) ≤ 0)𝑓(𝑒*,𝑡)𝑑𝑡 −

>0: loss from rejection of worthy agents (iii)⏞  ⏟  ∫︁ 1

0
𝑢(𝑒*,𝑡)I(0 < 𝑢(𝑒*,𝑡) < 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡

− 𝑐
∫︁ 1

0
I(𝑢(𝑒*,𝑡) ≥ 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡⏟  ⏞  

>0: loss from increase in testing costs (i)

= 0.

An increase in the threshold 𝑒* would lead to: (i) increased testing costs by making
additional agents that lie above 𝐼𝑢(𝑐) get tested before being rewarded (who were rewarded
without a test before the increase in 𝑒*), (ii) the rejection without a test of additional
agents that lie below 𝐼𝑢(0) (who were rewarded without a test before the increase in 𝑒*),
but also (iii) the rejection without a test of additional agents that lie below 𝐼𝑢(𝑐) but
above 𝐼𝑢(0) (who were rewarded without a test before the increase in 𝑒*). Channels (i)
and (iii) negatively affect the principal’s payoff, while channel (ii) tends to increase his
payoff. In choosing the optimal threshold 𝑒*, the principal trades off testing costs (i.e.,
effect (i)) with the increase in rewarding accuracy (i.e., the net effect of (ii) and (iii)).

Comparative statics. We now briefly discuss some comparative statics. For simplicity,
assume that 𝑒* ∈ (0,1) is unique with the second-order condition of the principal’s problem
satisfied strictly and that some agents are optimally tested.34 First, an increase in 𝑐

causes the (combined) magnitude of channels (i) and (iii) to increase without affecting
the magnitude of channel (ii).35 Thus, 𝑒* is decreasing in 𝑐; the more costly testing is, the

33The principal’s problem reduces to this because all mechanisms with Π(𝑒,𝑡) = I(𝑢(𝑒,𝑡) ≥ 𝑐 or 𝑒 ≥ 𝑒*)
and 𝑇 (𝑒,𝑡) = I(𝑢(𝑒,𝑡) ≥ 𝑐 and 𝑒 < 𝑒*) 𝑇 for some 𝑒* ∈ [0,1] are IC.

34Namely, 𝑒* > 0 and 𝑢(𝑒,𝑡) > 𝑐 for a positive measure of agents with 𝑒 < 𝑒*. This rules out the case
𝑢(𝑒,𝑡) = 𝑒 − 𝑞, where the principal only cares about evidence, in which case he does not test.

35In more detail, the partial derivative of −𝑐
∫︀ 1

0 I(𝑢(𝑒*,𝑡) ≥ 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡 with respect to 𝑐 is
−

∫︀ 1
0 I(𝑢(𝑒*,𝑡) ≥ 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡 + 𝑐𝑓(𝑒*,𝑡′) where 𝑡′ is such that 𝑢(𝑒*,𝑡′) = 𝑐. The partial derivative of
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more high-evidence agents are rewarded without a test. Particularly, 𝑣′(𝑒) is decreasing
in 𝑐 with 𝜕𝑣′(𝑒)/𝜕𝑐 = −

∫︀ 1
0 I(𝑢(𝑒*,𝑡) ≥ 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡 < 0, and by the Implicit Function

Theorem 𝑑𝑒*/𝑑𝑐 = −𝜕𝑣′(𝑒)/𝜕𝑐|𝑒=𝑒*/𝑣′′(𝑒*) < 0. Second, the principal’s optimal payoff
is decreasing in 𝑐. Third, since the principal’s objective function is independent of the
testing technology 𝜎, the optimal mechanism and payoff are the same under any two pro-𝑡
biased testing technologies with the same testing cost 𝑐.

Figure 4: The optimal mechanism under costly testing

(a) Pro-𝑡 biased testing
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Note: the dashed line represents the principal’s indifference curve 𝐼𝑢(𝑐): the principal is indifferent
between rewarding with test and not rewarding without test agents on that curve. The arrowed
line represents an iso-test-score curve (at an arbitrary level 𝑠 in the left panel and at level 𝑠* in
the right panel). The green area denotes the set of agents that are rewarded without getting
tested in the optimal mechanism. The red one denotes the set of agents that are neither tested
nor rewarded in the optimal mechanism. The yellow area denotes the set of agents that are
rewarded after getting tested in the optimal mechanism.

3.4.2 Testing technology biased in favor of evidence

Proposition 5 characterizes the optimal mechanism under pro-𝑒 biased and costly testing.

Proposition 5. If 𝜎 is pro-𝑒 biased, then there exists an optimal mechanism with
Π(𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠* or 𝑒 ≥ 𝑒*) and 𝑇 (𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠* and 𝑒 < 𝑒*) for some
(𝑒*,𝑠*) ∈ [0,1]2.

Finding an optimal mechanism is again remarkably simple. The principal’s problem
amounts to choosing threshold test score and evidence levels (𝑒*,𝑠*) ∈ arg max(̃︀𝑒,̃︀𝑠)∈[0,1]2 𝑣(̃︀𝑒,̃︀𝑠),∫︀ 1

0 𝑢(𝑒*,𝑡)I(0 < 𝑢(𝑒*,𝑡) < 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡 with respect to 𝑐 is 𝑢(𝑒*,𝑡′)𝑓(𝑒*,𝑡′) = 𝑐𝑓(𝑒*,𝑡′) > 0, which cancels
out with the corresponding term in the derivative of −𝑐

∫︀ 1
0 I(𝑢(𝑒*,𝑡) ≥ 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡.
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where

𝑣(̃︀𝑒,̃︀𝑠) :=
∫︁ 1

̃︀𝑠
∫︁ max{min{𝑒(𝑠),̃︀𝑒},𝑒(𝑠)}

𝑒(𝑠)
(̃︀𝑢(𝑒,𝑠) − 𝑐) ̃︀𝑓(𝑒,𝑠)𝑑𝑒𝑑𝑠 +

∫︁ 1

0

∫︁ max{𝑒(𝑠),̃︀𝑒}

max{𝑒(𝑠),̃︀𝑒}
̃︀𝑢(𝑒,𝑠) ̃︀𝑓(𝑒,𝑠)𝑑𝑒𝑑𝑠,

and ̃︀𝑢(𝑒,𝑠) := 𝑢(𝑒,𝜏(𝑒,𝑠)) and ̃︀𝑓(𝑒,𝑠) := 𝑓(𝑒,𝜏(𝑒,𝑠)).36 Every agent with evidence 𝑒 ≥ 𝑒* is
rewarded without a test, while agents with evidence 𝑒 < 𝑒* are tested and rewarded if
their (potential) test score is at least 𝜎(𝑒,𝑡) ≥ 𝑠*. The remaining agents are neither tested
nor rewarded. Figure 4(b) presents the structure of the optimal mechanism under pro-𝑒
biased testing.

When 𝑒(𝑠*) < 𝑒* (i.e., some agents are rewarded after being tested) and 𝑒*,𝑠* ∈ (0,1),37

the first-order conditions are

𝑣1(𝑒*,𝑠*) =

>0: gain from rejection
of unworthy agents (i)⏞  ⏟  

−
∫︁ 𝑠*

0
̃︀𝑢(𝑒*,𝑠) ̃︀𝑓(𝑒*,𝑠)𝑑𝑠 −

>0: loss from increase
in testing costs (ii)⏞  ⏟  
𝑐

∫︁ 1

𝑠*

̃︀𝑓(𝑒*,𝑠)𝑑𝑠 = 0,

𝑣2(𝑒*,𝑠*) = −
∫︁ 𝑒*

𝑒(𝑠*)
min{̃︀𝑢(𝑒,𝑠*) − 𝑐,0} ̃︀𝑓(𝑒,𝑠*)𝑑𝑒⏟  ⏞  

>0: gain from decrease in Type II error

−
∫︁ 𝑒*

𝑒(𝑠*)
max{̃︀𝑢(𝑒,𝑠*) − 𝑐,0} ̃︀𝑓(𝑒,𝑠*)𝑑𝑒⏟  ⏞  

>0: loss from increase in Type I error

= 0,

given that optimality requires 𝑒* ≤ 𝑒(𝑠*).38 The principal chooses 𝑠* considering the
trade-off between Type I and Type II errors—conditional on the fact that only agents with
evidence 𝑒 ≥ 𝑒* are rewarded without a test; for agents with evidence 𝑒 < 𝑒*, the principal
chooses between rewarding after testing and rejecting without testing. The Type I error
is due to the fact that the principal rejects without testing some agents whom he would
prefer to reward after testing. The Type II error is due to the fact that the principal tests
and rewards some agents that he would prefer to reject without testing. An increase in
the threshold 𝑒* would lead to: (i) the rejection of additional agents that lie below 𝐼𝑢(0)
(who were rewarded without a test before the increase in 𝑒*) and (ii) increased testing
costs by making additional agents that lie above 𝐼𝜎(𝑠*) get tested before being rewarded
(who were rewarded without a test before the increase in 𝑒*). Channel (ii) negatively
affects the principal’s payoff, while channel (i) tends to increase his payoff. In choosing
the optimal threshold 𝑒*, the principal trades off testing costs (i.e., effect (ii)) with the
increase in rewarding accuracy (i.e., effect (i)).

Comparative statics. We now briefly discuss some comparative statics. For simplicity,
assume that 𝑠*,𝑒* ∈ (0,1) are unique with the second-order condition of the principal’s

36The principal’s problem reduces to this because all mechanisms with Π(𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠* or 𝑒 ≥ 𝑒*)
and 𝑇 (𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠* and 𝑒 < 𝑒*) for some (𝑒*,𝑠*) ∈ [0,1]2 are IC.

37Notice that 𝑒* ≤ 𝑒(𝑠*) (for if 𝑒* > 𝑒(𝑠*) and 𝑐 > 0, then reducing 𝑒* would increase 𝑣(𝑒*,𝑠*)). For
𝑐 = 0, 𝑒* = 1 without loss.

38If 𝑒* > 𝑒(𝑠*), then decreasing 𝑒* to make it equal to 𝑒(𝑠*) would decrease testing costs without
changing the set of agents who are rewarded, thereby increasing the principal’s payoff.
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problem satisfied strictly and that some agents are optimally tested. Denote by 𝐽(𝑒*,𝑠*)
the Jacobian matrix of the first derivatives evaluated at (𝑒*,𝑠*), which is by assumption
negative definite. Particularly, 𝑣11(𝑒*,𝑠*),𝑣22(𝑒*,𝑠*) < 0 and det(𝐽(𝑒*,𝑠*)) > 0. Also,
𝑣12(𝑒*,𝑠*) = 𝑣21(𝑒*,𝑠*) = − (̃︀𝑢(𝑒*,𝑠*) − 𝑐) ̃︀𝑓(𝑒*,𝑠*) > 0. First, the total derivatives of 𝑒*and
𝑠* with respect to 𝑐 are:

𝑑𝑒*

𝑑𝑐
∝

<0: direct effect of 𝑐 on
𝑒* due to increase in

marginal testing costs⏞  ⏟  
−𝑣1𝑐(𝑒*,𝑠*)𝑣22(𝑒*,𝑠*) +

>0: indirect effect of 𝑐
on 𝑒* through direct

effect of 𝑐 on 𝑠*⏞  ⏟  
𝑣2𝑐(𝑒*,𝑠*)𝑣12(𝑒*,𝑠*),

𝑑𝑠*

𝑑𝑐
∝ −𝑣2𝑐(𝑒*,𝑠*)𝑣11(𝑒*,𝑠*)⏟  ⏞  

>0: direct effect of 𝑐 on
𝑠* due to increase in

marginal testing costs

+ 𝑣1𝑐(𝑒*,𝑠*)𝑣21(𝑒*,𝑠*)⏟  ⏞  
<0: indirect effect of 𝑐

on 𝑠* through direct
effect of 𝑐 on 𝑒*

,

where 𝑣1𝑐(𝑒*,𝑠*) = −
∫︀ 1

𝑠*
̃︀𝑓(𝑒*,𝑠)𝑑𝑠 < 0 and 𝑣2𝑐(𝑒*,𝑠*) =

∫︀ 𝑒*

𝑒(𝑠*)
̃︀𝑓(𝑒,𝑠*)𝑑𝑒 > 0 are the partial

derivatives of 𝑣1 and 𝑣2 with respect to 𝑐. An increase in the (marginal) cost 𝑐 of testing
tends to directly cause (i) 𝑒* to decrease by magnifying the testing cost savings associated
with a decrease in 𝑒* and (ii) 𝑠* to increase by magnifying the testing cost savings
associated with an increase in 𝑒*.39 However, an increase in 𝑠* tends to cause 𝑒* to
increase by reducing the marginal increase in testing costs associated with an increase in
𝑒*. Conversely, an increase in 𝑒* tends to cause 𝑠* to increase by increasing the marginal
(with respect to 𝑠*) Type II error. Therefore, although an increase in 𝑐 tends to directly
cause 𝑒* to fall and 𝑠* to rise, the interaction between 𝑒* and 𝑠* works in the opposite
direction making the net effect ambiguous. Still, we know that if 𝑠* decreases in response
to an increase in 𝑐, then 𝑒* should also decrease and—the contrapositive—if 𝑒* increases in
response to an increase in 𝑐, then 𝑠* should also increase. Second, the principal’s optimal
payoff is decreasing in 𝑐. Third, the optimal payoff is higher under less pro-𝑒 biased testing
technologies. Namely, take any two pro-𝑒 biased testing technologies 𝜎′ and 𝜎. If all
iso-test-score curves of 𝜎 cross the iso-test-score curves of 𝜎′ from above (i.e., 𝜎 is less
pro-𝑒 biased than 𝜎′), then the principal’s optimal payoff is higher under 𝜎′ than under
𝜎.40 Fourth, the principal’s payoff should tend to increase with the correlation between
evidence and talent. A strong (positive) correlation between 𝑒 and 𝑡 means that there are
not many agents with high (resp. low) talent and low (resp. high) evidence, which implies
that both Type I and Type II errors are small. As 𝑒 and 𝑡 become perfectly (positively)
correlated, the principal achieves the first-best just by asking for evidence—regardless of

39Put differently, an increase in 𝑐 can be seen to increase the marginal (with respect to 𝑠*) Type II error
and decrease the marginal Type II error, thereby tending to make 𝑠* increase to equalize the magnitudes
to the two errors.

40Comparative statics of 𝑠* and 𝑒* with respect to 𝜎 would have little value, since the optimal test
score thresholds (which are determined simultaneously with the optinal evidence thresholds) under
different testing technologies are not comparable, as they can only be interpreted with respect to their
corresponding testing technologies.
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his preferences and the testing technology.

Implementation of the optimal mechanism. We have so far restricted (without
loss) attention to truth-telling mechanisms. However, the optimal mechanism under
pro-𝑒 biased testing can be implemented in the following simple way. The principal gives
the agent two paths to getting rewarded: either (i) provide evidence 𝑒* and you will
be rewarded without a test or (ii) take a test without providing any evidence, score at
least 𝑠*, and you will be rewarded. The first option is not always provided (e.g., when
testing is free, the first option is not necessary in the optimal mechanism). Asking for
evidence is useful to the principal (as long as 𝑒* < 1). Last, notice that a similarly simple
implementation of the optimal mechanism under pro-𝑡 biased testing is not possible. In
that case, the principal needs to ask for evidence also from agents that are tested.41

4 Applications

In this section, I use the model to discuss hiring by prestigious employers, promotion
decisions, college admissions, and academic job market hiring.

4.1 Hiring by prestigious employers

A job candidate’s evidence 𝑒 is her CV quality (e.g., high school quality, undergraduate
institution quality and GPA, awards, distinctions, reference letters). 𝑡 is her ability and
drive not captured by 𝑒. A prestigious employer wants to decide whether to hire the
candidate. Testing amounts to letting some other employer hire the candidate. Testing is
costly because if the employer wants to then hire the candidate, he will have to poach her
at a cost.

In the optimal mechanism, Ivy-Leaguers with high credentials get immediately hired
by prestigious employers thanks to their evidence. On the other hand, talented candidates
with education from lower-ranked institutions and lower grades have to go through less
prestigious employers to prove their worth before they land a prestigious position. Also, if
the candidates’ performance in the less prestigious position is less sensitive to talent than
talent is valuable in the more prestigious position—a natural assumption, then worthy
candidates with low credentials are at a disadvantage also in the poaching stage.

41These observations on the implementation of optimal mechanisms also imply that under free testing
(i.e., 𝑐 = 0), if the principal (optimally) asks for evidence—which he does not need to do under pro-𝑒
biased testing, then he most likely values evidence (i.e., 𝑢(𝑒,𝑡) is increasing in 𝑒).
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4.2 Promotions

An employee of efficiency 𝑡 has exerted effort 𝑒. 𝜎(𝑒,𝑡) is the employee’s productivity,
increasing in 𝑒 and in 𝑡. Testing (by the employer/manager) amounts to verifying the
employee’s productivity 𝜎(𝑒,𝑡). The value to the principal of the agent that is not
promoted (i.e., continues to work in her current position) is 𝜎(𝑒,𝑡). His value of the
agent if promoted is ̃︀𝑢(𝑒,𝑡). Then, his problem is equivalent to the one in section 2 with
𝑢(𝑒,𝑡) := ̃︀𝑢(𝑒,𝑡) − 𝜎(𝑒,𝑡), as long as the difference ̃︀𝑢(𝑒,𝑡) − 𝜎(𝑒,𝑡) is non-decreasing in both
𝑒 and 𝑡. This condition on the difference can be interpreted to say that both effort and
talent have a (weakly) higher marginal return in the higher position, which comes with
increased responsibilities that allow the employee’s talent and effort to have a larger
impact.

Under differentiability and given Claims 1 and 2, the test is pro-𝑡 (resp. pro-𝑒) biased if
for every (𝑒,𝑡), 𝜕𝑢(𝑒,𝑡)/𝜕𝑒/(𝜕𝑢(𝑒,𝑡)/𝜕𝑡) is higher (resp. lower) than 𝜕𝜎(𝑒,𝑡)/𝜕𝑒/(𝜕𝜎(𝑒,𝑡)/𝜕𝑡),
or equivalently,

𝜕 ̃︀𝑢(𝑒,𝑡)/𝜕𝑒

𝜕 ̃︀𝑢(𝑒,𝑡)/𝜕𝑡

(resp. <)
>

𝜕𝜎(𝑒,𝑡)/𝜕𝑒

𝜕𝜎(𝑒,𝑡)/𝜕𝑡
,

that is, if the marginal rate of substitution of effort for talent is higher (resp. lower) in
the production function of the new position than of the current one.

4.3 College admissions and standardized testing

A college applicant’s evidence 𝑒 is her high school quality, grades, private tutoring received,
awards, and extracurricular activities. 𝑡 is her “natural” ability or drive that is not
captured by 𝑒. The college wants to decide whether to admit the applicant or not. Testing
amounts to requiring the applicant to take the standardized test.42

In the optimal mechanism, if the standardized test is not sensitive enough to talent,
then students can withhold evidence, which makes admission decisions imperfect at the
expense of students with low evidence (e.g., those with limited access to quality education,
tutoring, extracurricular activities, and opportunities to participate in competitions).
Particularly, if colleges want diversity and only value talent (trying to control for the
applicants’ unequal backgrounds), then the above problem is necessarily present under
standardized testing to the extent that applicants can pretend to be from a more modest
background than they actually are. Students from a privileged background have an
advantage over equally good—or even somewhat better—students from a more modest
background.

42In this setting, the college does not condition the requirement to take a test on the candidate’s report.
However, when the college requires a test score, the optimal mechanism takes the same form as in the
case of 𝑐 = 0.
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Even if universities do not only value talent in applicants (but instead value the total
ability of the candidate, part of which is due to nurture), then students from advantaged
backgrounds are still favored over equally able students from disadvantaged backgrounds
when the test is not sensitive enough to talent (compared to the total ability that colleges
care about).

4.4 Academic job market talks

An academic job market candidate’s research topic is comprised of a “mass” 𝑏 > 1 of
(uncountably infinitely many) problems.43 𝑒 ∈ [0,1] is the candidate’s knowledge, the
mass of problems which she has found answers to. 𝑡 is her ability to think on her feet.
More concretely, it is the probability with which she finds an answer on the spot to a
problem that she has not already solved. After the candidate presents answers to a mass
𝑒′ ∈ [0,𝑒] of problems and makes a claim about 𝑡, the hiring committee may test her.
Testing amounts to posing to the candidate countably infinitely many problems randomly
sampled from the mass of problems that the candidate has not already disclosed answers
to.44 Thus, if she presents answers to mass 𝑒′ ∈ [0,𝑒] of problems and is tested, she will
answer proportion

𝑝(𝑒,𝑡,𝑟) := 𝑒 − 𝑒′ + (𝑏 − 𝑒)𝑡
𝑏 − 𝑒′

of the problems posed to her. This is the sum of (i) the proportion (𝑒 − 𝑒′)/(𝑏 − 𝑒′) of
problems sampled from the set of problems that the candidate already has answers to (but
has not disclosed them) and (ii) the proportion (𝑏 − 𝑒)/(𝑏 − 𝑒′) of problems sampled from
the set of problems that the candidate does not already have answers to multiplied by
the proportion 𝑡 to which the candidate will find answers on the spot. 𝑢(𝑒,𝑡) is the hiring
committee’s surplus from hiring the candidate (compared to the committee’s outside
option). Observing 𝑒′ and 𝑝(𝑒,𝑡,𝑒′) is equivalent to observing 𝑒′ and 𝜎(𝑒,𝑡) := 𝑒 + (𝑏 − 𝑒)𝑡,
so the committee’s problem is equivalent to the problem that we have studied.

Different testing technologies can be interpreted as different values of 𝑏. An increase in
the mass 𝑏 of the universe of problems makes it less likely that the candidate will be asked
a question that she already has an answer to (but has not presented), thereby making the
test more sensitive to talent and increasing the principal’s payoff.

43The analysis can apply to presentations more generally (e.g., by a start-up founder to a venture
capital firm).

44This can be understood as there being a set of problems with cardinality equal to the cardinality of
R. There is no interdependence among the problems (e.g., the agent having the answer to a problem 𝑥
carries no information with regard to whether she also has the answer to a problem 𝑦). Also, the agent
is equally likely to have or find an answer to any of the problems. Thus, there is no need to identify
problems with an index.
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5 Extensions and robustness

This section first discusses optimal screening under alternative evidence structures. Then,
is studies two extensions of the model: (i) one where the principal has to pay a cost before
the agent reports her type in order to design the test, which he will then (after the agent
reports her type) choose whether to administer at an additional cost and (ii) the case
where evidence is not exogenous but rather endogenously produced by the agent before
she interacts with the principal.

5.1 Optimal screening under alternative evidence structures

I study optimal screening under three alternative scenarios: (i) the agent cannot hide
evidence, (ii) the agent can present evidence also on talent, or (iii) the agent cannot
present evidence (on either dimension of her type).45

5.1.1 Optimal screening when the agent cannot hide evidence

Assume that 𝑒 is observed by the principal. Then, given that the test is at least somewhat
sensitive to 𝑡, testing reveals 𝑡 and, thus, the agent’s type completely. The principal’s
problem is decoupled: he can solve it for each 𝑒 separately. It is easy to see that the
optimal mechanism is described by Proposition 6.

Proposition 6. Assume that the agent cannot hide evidence. In the optimal mechanism,
for every level of evidence 𝑒 ∈ [0,1], if

(i) 𝑢reward(𝑒) > max{𝑢test(𝑒),0}, then every agent with evidence 𝑒 is rewarded without
a test,

(ii) 0 > max{𝑢reward(𝑒), 𝑢test(𝑒)}, then every agent with evidence 𝑒 is neither tested nor
rewarded,

(iii) 𝑢test(𝑒) ≥ max{𝑢reward(𝑒), 0}, then an agent with evidence 𝑒 is tested and rewarded
if 𝑢(𝑒,𝑡) ≥ 𝑐; otherwise, she is neither tested nor rewarded,

where 𝑢reward(𝑒) :=
∫︀ 1

0 𝑢(𝑒,𝑡)𝑓(𝑡)𝑑𝑡 and 𝑢test(𝑒) :=
∫︀ 1

0 (𝑢(𝑒,𝑡) − 𝑐)I(𝑢(𝑒,𝑡) ≥ 𝑐)𝑓(𝑡)𝑑𝑡.

This implies that under pro-𝑒 (resp. pro-𝑡 biased testing), if two agents (𝑒1,𝑡1) and
(𝑒2,𝑡2), 𝑒2 > 𝑒1, both need to be tested (based on their level of evidence) to get rewarded,
then the test score threshold that (𝑒1,𝑡1) needs to meet is lower (resp. higher) than the
test score threshold that (𝑒2,𝑡2) needs to meet.46 For example, if the principal only values

45The case where the agent can present evidence on 𝑡 but not on 𝑒 is a relabeling of the main model.
46To see this, notice that under pro-𝑒 (resp. pro-𝑡 biased testing), if 𝑢(𝑒1,𝑡1) = 𝑢(𝑒2,𝑡2) = 𝑐 and 𝑒2 > 𝑒1,

then 𝜎(𝑒1,𝑡1) < 𝜎(𝑒1,𝑡1) (resp. 𝜎(𝑒1,𝑡1) > 𝜎(𝑒1,𝑡1)).
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talent (i.e., 𝑢(𝑒,𝑡) = 𝑡 − 𝑞 for some 𝑞 ∈ (0,1)), then agents with less evidence do not need
to test as high (as those with more evidence) to get rewarded. This is in stark contrast
with the the optimal mechanism where agents can hide evidence, in which case every
agent faces the same test score cutoff.

This analysis implies the following for college admissions. If (i) college applicants
can to a large extent hide their privilege and (ii) standardized tests are less sensitive to
talent than colleges value talent, then every applicant will have to achieve roughly the
same test score to get admitted, and affirmative action (i.e., trying to control for unequal
backgrounds, measured by 𝑒) will not be very effective in achieving a diverse class of
talented students. On the other hand, if (i) college applicants cannot hide evidence of
privilege and (ii) standardized tests are less sensitive to talent than colleges value talent,
then applicants from disadvantaged backgrounds will face lower test score cutoffs, and
affirmative action is effective. Last, if standardized tests are sensitive enough to talent
(compared to college preferences), then testing does not create incentives for applicants
to hide evidence of privilege (even if they can do so), and affirmative action is effective
regardless of whether college applicants can or not (since).

The analysis can explain the not so pronounced—or at least milder than some expected—
effects (based on preliminary evidence) of the reversal of affirmative action by the U.S.
Supreme Court.47 The mild effects of the reversal can be explained by the combination of
two factors: (i) applicants have considerable room to hide evidence of privilege and (ii)
standardized test scores reflect talent less than colleges value talent. If both conditions
hold, then affirmative action has small effects, and, thus, so does its reversal. If any of
the two condition fails, then we should expect the reversal of affirmative action to have
significant effects on diversity in college admissions.

5.1.2 Optimal screening when the agent can present evidence also on talent

Consider the case where—apart from 𝑒—𝑡 also has an evidence structure. That is, agent
(𝑒,𝑡) can report any (𝑒′,𝑡′) ≤ (𝑒,𝑡) but not 𝑒′ > 𝑒 or 𝑡′ > 𝑡. Then, the principal can achieve
the full information first-best, inducing—without testing—every agent to present all her
evidence on both 𝑒 and 𝑡. The conclusion is the same if 𝑡 is observed (at no cost) by the
principal and 𝑒 is evidence.

The comparison between this and the main model emphasizes (i) the difference in
peoples’ incentives to present evidence that is in principle (i.e., absent testing) favorable
to them and (ii) how these incentives shape the principal’s problem of evaluating them.
The existence of an agent characteristic that is valuable to the principal but which (i)
the agent cannot provide evidence on and (ii) the principal can only imperfectly test
using a test that is overly (compared to the principal’s preferences) sensitive to other

47For example, see https://www.nytimes.com/2024/09/13/us/affirmative-action-ban-campus-
diversity.html.
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(valuable) agent characteristics creates incentives for the agent to understate those other
characteristics that she can actually provide favorable evidence on. This problem vanishes
(i) if the agent can provide evidence on every characteristic (or if those that she cannot
provide evidence on are observed by the principal) or (ii) if the test is sensitive only to
the characteristic that the agent cannot provide evidence on.

These results are consistent with the finding that hiding one’s effort is particularly
prevalent among younger individuals. Effortless perfection (i.e., the need to seem perfect
without apparent effort) and hiding one’s effort have been documented among university
students (Travers et al., 2015; Casale et al., 2016).The psychology literature has emphasized
personality traits that may lie behind this finding. Namely, hiding effort has been identified
as a unique expression of perfectionistic self-presentation (Flett et al., 2016). My model
hints towards an alternative (or complementary) interpretation of this finding. If as an
individual progresses in her career, her talent is revealed during all the evaluation stages
that she goes through, then individuals that are further along in their career paths should
have reduced incentives to hide their hard work.

5.1.3 Optimal screening when the agent cannot present evidence

Consider the case where the agent can present evidence on neither 𝑒 nor 𝑡. That is, agent
(𝑒,𝑡) can report any (𝑒′,𝑡′) ∈ [0,1]2. We can still restrict attention to truthful mechanisms
with pass-or-fail tests. Proposition 7 characterizes IC mechanisms.

Proposition 7. Assume that the agent cannot present evidence. A mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩
is IC if and only if

(i) Π(𝑒,𝑡) is non-decreasing in 𝑡 for every 𝑒,

(ii) Π(𝑒, 𝜏(𝑒,𝑠)) is constant in 𝑒 over 𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)] for every 𝑠 ∈ [0,1], and

(iii) (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) ≤ Π(0,0) for every (𝑒,𝑡),

where Π(𝑒,𝑡) ≡ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) + 𝑇 (𝑒,𝑡).

Condition (i) is identical to the one in Proposition 7, where 𝑒 is evidence. Condition
(iii) is stronger (when combined with the other two conditions) than the corresponding
condition (iii) of Proposition 7. It ensures that the least talented agent with the least
evidence does not have incentives to over-report her talent and/or evidence to imitate an
agent (𝑒,𝑡) whose test score she cannot achieve.48 Put differently, in order to reward some
agents with higher probability (than agent (0,0)), the principal needs to test those agents
with high enough probability to prevent agent (0,0) from imitating them to get rewarded
in case she is not tested. The condition is stricter than the one in Proposition 7 because

48Combined with conditions (i) and (ii), this also means that no other agent has incentives to imitate
an agent whose test score she cannot achieve.
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now agents can also imitate agents with higher 𝑒 to get rewarded in the case that they
are not tested. Thus, that agents cannot present evidence on 𝑒 enhances the need to test.

Last, condition (ii) makes sure that agents do not want to under- or over-report their 𝑒

to imitate agents whose test score they can achieve. Namely, an agent (𝑒,𝑡) does not want
to imitate an agent (𝑒′,𝑡′) with evidence 𝑒′ > 𝑒 (resp. 𝑒′ < 𝑒), talent 𝑡′ < 𝑡 (resp. 𝑡′ > 𝑡),
and equal test score 𝜎(𝑒′,𝑡′) = 𝜎(𝑒,𝑡) in order to get rewarded with probability Π(𝑒′,𝑡′)
instead of Π(𝑒,𝑡). Notice that for any possible level of evidence 𝑒′ that agent (𝑒,𝑡) may
reveal, because of condition (i), she will want to report her talent to be as high as possible
(making sure that she will be able to pass the test), up to the point where 𝜎(𝑒′,𝑡′) = 𝜎(𝑒,𝑡).
The condition is stricter than the one in Proposition 7 because now agents can not only
understate but also overstate 𝑒. This nullifies the advantage that agents with high 𝑒 have
(relative to agents with the same test score but lower 𝑒) when they can present evidence.

The probability of getting rewarded without a test is the same for everyone.
Lemma 6 shows that when testing is costly and some agents are (optimally) rewarded
with higher probability than other ones, the optimal mechanism satisfies condition (iii) of
Proposition 1 with equality. Under free testing or when it is not optimal to reward some
agents with higher probability, it is still without loss to constrain attention to mechanisms
that satisfy condition (iii) of Proposition 7 with equality.

Lemma 6. Assume that the agent cannot present evidence. Given any IC mechanism
𝑀 ≡ ⟨𝑇,𝑃 ⟩, there exists an IC mechanism 𝑀 ′ ≡ ⟨𝑇 ′,𝑃 ′⟩ with (1 − 𝑇 ′(𝑒,𝑡))𝑃 ′(𝑒,𝑡,∅) =
Π′(0,0) for every (𝑒,𝑡) that is outcome-equivalent to 𝑀 and has at most as high testing
costs as 𝑀 . For 𝑐 > 0, if also Π(𝑒,𝑡) > Π(0,0) for a positive measure of agent types, then
𝑀 ′ has lower testing costs than 𝑀 .

By Lemma 6 Π(𝑒,𝑡) = Π(0,0) + 𝑇 (𝑒,𝑡). Thus, the principal’s objective function,∫︀ 1
0

∫︀ 1
0 [Π(𝑒,𝑡)𝑢(𝑒,𝑡) − 𝑐𝑇 (𝑒,𝑡)] 𝑓(𝑒,𝑡)𝑑𝑡𝑑𝑒, can be written as

∫︁ 1

0

∫︁ 𝑒(𝑠)

𝑒(𝑠)
[Π(𝑒,𝜏(𝑒,𝑠))(𝑢(𝑒,𝜏(𝑒,𝑠)) − 𝑐) + 𝑐Π(0,0)] 𝑓(𝑒,𝜏(𝑒,𝑠))𝑑𝑒𝑑𝑠, (4)

which is linear in Π, so by Bauer’s maximum principle, there exists an extreme Π (among
Π(𝑒, 𝜏(𝑒,𝑠)) that are constant in 𝑒 and non-decreasing in 𝑠) that solves the principal’s
problem. Proposition 8 describes that extreme optimal mechanism.

Proposition 8. Assume that the agent cannot present evidence. There exists an optimal
mechanism with Π(𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠*) and 𝑇 (𝑒,𝑡) = Π(𝑒,𝑡) − Π(0,0) for some 𝑠* ∈ (0,1).
That is, either

(i) 𝑠* = 0, and every agent is rewarded without a test or
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(ii) 𝑠* > 0, and each agent (𝑒,𝑡) is (a) rewarded after getting tested if 𝜎(𝑒,𝑡) ≥ 𝑠* or (b)
neither tested nor rewarded if 𝜎(𝑒,𝑡) < 𝑠*.

The inability of agents to present evidence on one of their attributes limits the set
of IC mechanisms, thereby decreasing—in most cases—the principal’s optimal payoff.
Assume for simplicity that the optimal mechanism is unique. When the testing technology
is pro-𝑒 biased, if some—but not all–agents are optimally rewarded without a test when 𝑒

is actually evidence (i.e., the optimal evidence threshold for rewarding without a test lies
strictly between 0 and 1), then the principal’s payoff is lower if evidence is not available
to the agents. When the testing technology is pro-𝑡 biased, if not all agents are optimally
rewarded without a test when 𝑒 is actually evidence, then the principal’s payoff is lower if
evidence is not available to the agents. Particularly, the principal now has to choose 𝑠*

trading-off Type I and Type II errors even when 𝜎 is pro-𝑡 biased. Pro-𝑡 biased tests are
not inherently better than pro-𝑒 biased tests when the agents cannot present evidence on
𝑒. Regardless of whether it is pro-𝑡 or -𝑒 biased, the more closely the test aligns with the
principal’s preferences, the higher the principal’s optimal payoff is.

The comparison between the baseline model and the case where the agent cannot
present evidence implies the following about the “signal jamming” problem that arises
in career concern models (e.g., see Holmström, 1999). Under—as in career concerns
models—free monitoring of the employee’s productivity,49 if the employer can ask for hard
evidence of effort, then the signal jamming problem is mitigated if productivity is sensitive
enough to talent—compared to the employer’s preferences for rewarding (e.g., promoting)
the employee. However, when productivity is not sensitive enough to talent, then the
signal jamming problem persists even if the employer can ask for evidence of effort. Agents
have incentives to withhold evidence, which they should be paid information rents to
reveal.

5.2 Costly test design

Treating the testing technology 𝜎 as exogenous is reasonable in several applications. For
example, in hiring by prestigious employers (section 4.1), the employee’s production
function in the less prestigious position is not chosen by the prestigious employer. In
promotion decisions (section 4.2), the employee’s production function in the current
position depends on her current job description and responsibilities, which should mostly
reflect the firm’s regular operating needs rather than support the employer’s promotion
decisions.

However, in other cases (e.g., hiring decisions where testing amounts to actual tests
and interviews), the principal may be able to choose the testing technology. How does

49The argument still holds as long as monitoring is not too costly. If it is, then no monitoring occurs,
so there can be no signal jamming either.
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his problem change in that case? Let there be a cost 𝐶(𝜎) that the principal needs
to pay before the interaction with the agent, so that she can use testing technology 𝜎

during the interaction with the agent. Indeed, it is reasonable that the principal needs
to design a test (if she designs a test at all) before the interaction with the agent due to
time constraints and the complexity of designing a test. During the interaction with the
agent, the principal can only choose whether to administer the test at cost 𝑐. Then, the
principal’s problem can be solved in two steps: (i) finding the optimal mechanism for each
possible testing technology 𝜎 ∈ Σ, and then (ii) choosing the optimal testing technology
𝜎* ∈ Σ form the set Σ of conceivable testing technologies. The solution to the first step is
the one we have already described.50

If tests that are more sensitive to talent are more expensive to devise, then our results
imply that as long as the test is under-sensitive (compared to the principal’s preferences)
to talent, there are gains from increasing its sensitivity to it, which the principal will have
to compare to the cost of making the test more sensitive to talent. The principal will
want to make the tests at most as sensitive to talent as his preferences are, since tests
that are overly sensitive to talent are as effective as those that are exactly aligned with
the principal’s preferences.51

However, when agents cannot present evidence on any of their attributes, the principal
can always gain from finely calibrating the test’s sensitivity (to the agent’s attributes)
to align it with his preferences. Regardless of whether it is pro-𝑡 or -𝑒 biased, the more
closely the test aligns with the principal’s preferences, the higher the principal’s payoff is.

5.3 Endogenous evidence production

If the agent produces evidence before the interaction with the principal, then in some
applications, the principal may be able to affect the agent’s evidence production by
committing to a mechanism before the agent produces evidence. Indeed, in promotion
decisions (section 4.2), the employer may use the prospect of promotion to incentivize
the employee to exert effort.52 Treating evidence as exogenous is more in line with other
applications. For instance, in hiring decisions (section 4.1), a single employer has little
labor market power to affect the candidate’s (effort to obtain) credentials. Similarly,
in college admissions (section 4.3), a single college cannot affect how hard high school

50That is, assuming that Σ contains only pro-𝑡 and pro-𝑒 biased testing technologies (and possibly a
testing technology that exactly coincides with the principal’s preferences). Also, it is easy to see that
there are no gains from designing multiple tests to the extent that all tests have the same administration
cost 𝑐.

51Still, if there is uncertainty over a test’s properties, in a robust approach, the principal will not need
to worry about making the test overly sensitive to talent.

52Still, if promotions are not the main motive for the employee to exert effort (e.g., a bonus could
be the main motive), then effort can still be taken as approximately exogenous. For example, if the
employee can obtain a higher position by changing employers, then the prospect of promotion in the
current company may not significantly affect her effort.
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students study.
Our characterization of the optimal mechanism then still applies—even if evidence is

endogenous, as long as the principal cannot influence evidence production by committing
ex ante to a mechanism. Let the agent’s talent 𝑡 follow a distribution with density 𝑔

and support [0,1]. Taking as given the principal’s mechanism, summarized by evidence
and test score thresholds (𝑒*,𝑠*), the agent exerts costly effort 𝑥 ∈ R+ to produce
evidence.53 Exerting effort 𝑥 has cost 𝐶𝑡(𝑥), non-decreasing in 𝑥. Evidence is distributed,
conditional on 𝑥, according to density function ℎ𝑥(𝑒) with support [0,1]. Denote by 𝑥*(𝑡)
the equilibrium level of effort by type 𝑡. An equilibrium is a fixed point (𝑥*,𝑒*,𝑠*) where
𝑥* : [0,1] → R+ is a best-response to (𝑒*,𝑠*) and (𝑒*,𝑠*) is a best-response to 𝑥* (i.e., the
thresholds (𝑒*,𝑠*) that solve the principal’s problem when the agent’s type has density
𝑓(𝑒,𝑡) = 𝑔(𝑡)ℎ𝑥*(𝑡)(𝑒)). (𝑥*,𝑒*,𝑠*) can be interpreted as a symmetric equilibrium where
each of multiple “effort-taking” principals chooses thresholds (𝑒*,𝑠*).

While a detailed analysis of endogenous evidence production is beyond the scope of
this paper, the following observation shows the importance of the fact that the optimal
mechanism has been characterized under minimal assumptions on the agent’s type distri-
bution (i.e., that it admits a full-support density). In equilibrium, by exerting effort 𝑥,
agent 𝑡 will earn expected payoff

∫︀ 1
min{𝑒*,𝜀(𝑡,𝑠*)} ℎ𝑥(𝑒)𝑑𝑒 − 𝐶𝑡(𝑥), where 𝜀(𝑡,𝑠) is implicitly

given by 𝜎(𝜀(𝑡,𝑠),𝑡) = 𝑠. If, for example, 𝑐 = 0, then 𝑒* = 1 and so 𝑥*(𝑡) = 0 for every
𝑡 ≥ 𝜏(0,𝑠*) or 𝑡 ≤ 𝜏(1,𝑠*). That is, agents so talented that they are rewarded even without
evidence and agents so untalented that they are not rewarded even if they present evidence
𝑒 = 1 do not exert effort. More generally, the agent’s incentives to exert effort—and,
thus, effort itself—will often be non-monotone in 𝑡.54 Thus, evidence and talent may be
stochastically dependent in complicated ways.

6 Conclusion

This paper has proposed a model of bidimensional screening, where an agent (she) with
two attributes—evidence and talent—presents evidence (i.e., verifiably discloses possibly
part of her evidence) and is (possibly) tested at a cost by the principal (he), who then

53Notice that the optimal mechanism can always be summarized by these two thresholds. Under pro-𝑡
biased testing, there is only an evidence threshold.

54For example, let 𝑥 ∈ [0,1] with 𝐶𝑡(𝑥) := 𝜉(𝑡)𝑥2/2, where 𝜉(𝑡) > 0 is decreasing in 𝑡, 𝑢(𝑒,𝑡) := 𝛾𝑢𝑒+(1−
𝛾𝑢)𝑡 − 𝑞, 𝜎(𝑒,𝑡) := 𝛾𝑠𝑒 + (1 − 𝛾𝑠)𝑡, where 1 > 𝛾𝑠 > 𝛾𝑢, and 𝐻𝑥(𝑒) :=

∫︀ 𝑒

0 ℎ𝑥(𝑦)𝑑𝑦 = −2𝑥𝑒(1 − 𝑒) + 𝑒(2 − 𝑒).
Then,

𝑥*(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if 𝑡 ≤ 𝑠* − 𝛾𝑠

1 − 𝛾𝑠
2[𝑠* − (1 − 𝛾𝑠)𝑡][𝛾𝑠 − 𝑠* + (1 − 𝛾𝑠)𝑡]

𝛾2
𝑠 𝜉(𝑡) if 𝑡 ∈

(︂
𝑠* − 𝛾𝑠

1 − 𝛾𝑠
,

𝑠*

1 − 𝛾𝑠

)︂
0 if 𝑡 ≥ 𝑠*

1 − 𝛾𝑠
.
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decides whether to reward the agent. The agent cannot unilaterally prove anything about
her talent. The test delivers a signal (i.e., the test score)—increasing in both evidence
and talent—of the agent’s type and the principal (weakly) values both evidence and
talent in an agent. If the principal is going to test the agent, then the agent may have
incentives to hide evidence—although the principal values evidence—to influence how the
principal interprets the test result. Particularly, she may want to hide evidence to make
the principal attribute the test result to talent, thereby overestimating her talent.

This problem arises when the test (score) is less sensitive to talent than talent is
valuable to the principal. In that case, the optimal mechanism features two types of
inefficiencies, both of which favor high-evidence agents over low-evidence ones: (i) it
rewards some undeserving agents without testing them but rather only by asking them
to present a certain level of evidence, and (ii) even among agents that cannot meet that
evidence threshold, it rewards (after testing) some undeserving agents with high evidence
but low talent, while it rejects some deserving agents with high talent but low evidence.
Remarkably, this is the structure of the optimal mechanism even when the principal only
values talent. The principal still optimally rewards evidence even though it is worthless
to him.

The results indicate how less worthy individuals with high credentials or effort to show
are favored—by an optimal and objective evaluation mechanism—over more worthy ones,
who have however lower credentials (or effort to show). Ivy-Leaguers are immediately hired
by prestigious employers, while those from more modest backgrounds have to go through
less prestigious employers to prove their worth before landing a prestigious position. Even
controlling for the fact that they need to first take a less prestigious position, they may still
be at a disadvantage when trying to transition to a more prestigious one. Hard-working
employees with mediocre managerial skills are promoted to managerial positions over less
hard-working ones who would, however, make better managers.

Last, in college admissions, high school students from privileged backgrounds have an
advantage over equally good (or even better) students from modest backgrounds—even if
colleges value diversity and try to control for the applicants’ unequal backgrounds but
their evaluation mechanisms (e.g., standardized tests) are sensitive to the applicant’s prior
training. Thus, affirmative action (i.e., trying to control for college applicants’ unequal
backgrounds) is expected to have small effects if two conditions are satisfied: (i) applicants
have considerable room to hide evidence of privilege and (ii) standardized test scores
reflect talent less than colleges value talent. If the effects of the reversal of affirmative
action by the U.S. Supreme Court are not as pronounced as some expected, it could be
because both of these conditions are true, indicating that the effectiveness of affirmative
action (and, thus, the impact of its reversal) is limited. If any of the two condition fails,
then we should expect the reversal of affirmative action to have significant effects on
diversity in college admissions.
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A Proofs

Proof of Lemma 1 Take an IC mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩. Construct the mechanism
𝑀 ′ ≡ ⟨𝑇 ′,𝑃 ′⟩ with (i) 𝑃 ′

𝑎𝑡(𝑒,𝑡) = 1, (ii) 𝑇 ′(𝑒,𝑡) = 𝑇 (𝑒,𝑡)𝑃𝑎𝑡(𝑒,𝑡) ≤ 𝑇 (𝑒,𝑡), and (iii)
𝑃 ′(𝑒,𝑡,∅) = (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅)/(1 − 𝑇 ′(𝑒,𝑡)) for any (𝑒,𝑡).55

We have then that (a) 𝑇 ′(𝑒,𝑡)𝑃 ′
𝑎𝑡(𝑒,𝑡) = 𝑇 (𝑒,𝑡)𝑃𝑎𝑡(𝑒,𝑡), (b) (1 − 𝑇 ′(𝑒,𝑡))𝑃 ′(𝑒,𝑡,∅) =

(1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) and (c) Π′(𝑒,𝑡) = Π(𝑒,𝑡) for any (𝑒,𝑡). (a)-(c) combined imply that
the problem of every agent type under 𝑀 ′ is the same as it was under 𝑀 , so 𝑀 ′ is also
IC. (c) means that 𝑀 ′ is outcome-equivalent to 𝑀 .

Last, to see why the second part is true, notice that for 𝑐 > 0, 𝑀 ′ saves on testing
costs compared to 𝑀 if there exists (a positive measure of types) (𝑒,𝑡) with 𝑇 (𝑒,𝑡) > 0
and 𝑃𝑎𝑡(𝑒,𝑡) < 1. Q.E.D.

Proof of Lemma 2 Let 𝑀 ≡ ⟨𝑇,𝑃 ⟩ be an IC mechanism. Then, construct the
mechanism 𝑀 ′ := ⟨𝑇 ′,𝑃 ′⟩ with (i) 𝑇 ′(𝑒,0) = 0 for every 𝑒 and 𝑇 ′(𝑒,𝑡) = 𝑇 (𝑒,𝑡) for every
(𝑒,𝑡) with 𝑡 > 0, (ii) 𝑃 ′(𝑒,𝑡,∅) = 𝑃 (𝑒,𝑡,∅) + (𝑇 (𝑒,𝑡) − 𝑇 ′(𝑒,𝑡)) (1 − 𝑃 (𝑒,𝑡,∅)) for every (𝑒,𝑡),
and (iii)

𝑃 ′(𝑒,𝑡,𝑠) :=

⎧⎪⎨⎪⎩0 if 𝑠 < 𝜎(𝑒,𝑡)

𝑃𝑎𝑡(𝑒,𝑡) if 𝑠 ≥ 𝜎(𝑒,𝑡)

for every (𝑒,𝑡) and 𝑠 ∈ [0,1].
If every type reports truthfully, 𝑀 ′ rewards each agent type with the same probability

that 𝑀 does, so it remains to show that 𝑀 ′ is IC.
By IC of 𝑀 we have that for every (𝑒,𝑡)

(𝑒,𝑡) ∈ arg max
(̂︀𝑒,̂︀𝑡)≤(𝑒,1)

{︁
(1 − 𝑇 (̂︀𝑒,̂︀𝑡))𝑃 (̂︀𝑒,̂︀𝑡,∅) + 𝑇 (̂︀𝑒,̂︀𝑡)I (𝜎(𝑒,𝑡) ≥ 𝜎(𝑒′,𝑡′))

}︁
. (5)

By construction, we have that 𝑇 (̂︀𝑒,̂︀𝑡) = 𝑇 ′(̂︀𝑒,̂︀𝑡) and 𝑃 (̂︀𝑒,̂︀𝑡,∅) = 𝑃 ′(̂︀𝑒,̂︀𝑡,∅) for every (̂︀𝑒,̂︀𝑡)
with ̂︀𝑡 > 0, so no type (𝑒,𝑡) has incentives to imitate any type (̂︀𝑒,̂︀𝑡) with ̂︀𝑡 > 0 under
mechanism 𝑀 ′. Also, for any (𝑒,𝑡) and any (̂︀𝑒,̂︀𝑡) with ̂︀𝑡 = 0 and ̂︀𝑒 ≤ 𝑒, 𝜎(𝑒,𝑡) ≥ 𝜎(̂︀𝑒,̂︀𝑡),
which means that the payoff of (𝑒,𝑡) from reporting (̂︀𝑒,̂︀𝑡) with ̂︀𝑡 = 0 is equal to

(1 − 𝑇 ′(̂︀𝑒,̂︀𝑡))𝑃 ′(̂︀𝑒,̂︀𝑡,∅) + 𝑇 ′(̂︀𝑒,̂︀𝑡)I (𝜎(𝑒,𝑡) ≥ 𝜎(𝑒′,𝑡′)) =

(1 − 0)𝑃 ′(̂︀𝑒,̂︀𝑡,∅) = 𝑃 (̂︀𝑒,̂︀𝑡,∅) +
(︁
𝑇 (̂︀𝑒,̂︀𝑡) − 𝑇 ′(̂︀𝑒,̂︀𝑡))︁ (︁

1 − 𝑃 (̂︀𝑒,̂︀𝑡,∅)
)︁

=

(1 − 𝑇 (̂︀𝑒,̂︀𝑡))𝑃 (̂︀𝑒,̂︀𝑡,∅) + 𝑇 (̂︀𝑒,̂︀𝑡) = (1 − 𝑇 (̂︀𝑒,̂︀𝑡))𝑃 (̂︀𝑒,̂︀𝑡,∅) + 𝑇 (̂︀𝑒,̂︀𝑡)I (𝜎(𝑒,𝑡) ≥ 𝜎(𝑒′,𝑡′))

≤ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) + 𝑇 (𝑒,𝑡),
55In 𝑃 ′(𝑒,𝑡,∅), if 𝑇 ′(𝑒,𝑡) = 1, cancel (1 − 𝑇 (𝑒,𝑡)) in the numerator and (1 − 𝑇 ′(𝑒,𝑡)) in the denominator.
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where the inequality follows from (5). Thus, no type (𝑒,𝑡) has incentives to imitate any
type (̂︀𝑒,̂︀𝑡) with ̂︀𝑡 = 0 under mechanism 𝑀 ′. We conclude that 𝑀 ′ is IC. Q.E.D.

Proof of Proposition 1 Denote the total probability with which type (𝑒,𝑡) is rewarded
if she reports (̂︀𝑒,̂︀𝑡) (with ̂︀𝑒 ≤ 𝑒) by

̃︀𝑃 (̂︀𝑒,̂︀𝑡; 𝑒,𝑡) := (1 − 𝑇 (̂︀𝑒,̂︀𝑡))𝑃 (̂︀𝑒,̂︀𝑡,∅) + 𝑇 (̂︀𝑒,̂︀𝑡)I (︁
𝜎(𝑒,𝑡) ≥ 𝜎(̂︀𝑒,̂︀𝑡))︁

.

Also, define condition (iii’) (a strengthening of condition (iii)) to say that (1 −
𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) ≤ Π(𝑒′,0) for every 𝑒,𝑡,𝑒′ with 𝑒 ≤ 𝑒′.

Step 1: I first show that condition (i) is necessary for IC by showing the contrapositive.
Assume that for some 𝑒,𝑡1,𝑡2 with 𝑡2 > 𝑡1, Π(𝑒,𝑡2) < Π(𝑒,𝑡1). Then, IC of type (𝑒,𝑡2) is
violated, since ̃︀𝑃 (𝑒,𝑡1; 𝑒,𝑡2) = Π(𝑒,𝑡1) > Π(𝑒,𝑡2), that is, (𝑒,𝑡2) can imitate (𝑒,𝑡1) to (reach
(𝑒,𝑡1)’s test score threshold and) get rewarded with higher probability that she would if
she truthfully reported her type.

Step 2: I now show that condition (iii’) is necessary for IC by showing the contraposi-
tive.56 Assume that for some 𝑒,𝑒′,𝑡 with 𝑒′ ≥ 𝑒, (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) > Π(𝑒′,0). Then, IC
of type (𝑒′,0) is violated, since ̃︀𝑃 (𝑒,𝑡; 𝑒′,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) > Π(𝑒′,0), that is, (𝑒′,0)
can imitate (𝑒,𝑡) to get rewarded with higher probability that she would if she truthfully
reported her type (even if she cannot achieve (𝑒,𝑡)’s test score).

Step 3: I now show that provided that (i) and (iii’) are satisfied, Π(𝑟, 𝜏 (𝑟,𝜎(𝑒,𝑡))) being
non-decreasing in 𝑟 over 𝑟 ∈ [𝑒(𝜎(𝑒,𝑡)),𝑒] for every (𝑒,𝑡) is necessary and sufficient for IC.

IC of type (𝑒,𝑡) is satisfied if and only if

max
(̂︀𝑒,̂︀𝑡)≤(𝑒,1)

[︁
(1 − 𝑇 (̂︀𝑒,̂︀𝑡))𝑃 (̂︀𝑒,̂︀𝑡; ∅) + 𝑇 (̂︀𝑒,̂︀𝑡)I (︁

𝜎(𝑒,𝑡) ≥ 𝜎(̂︀𝑒,̂︀𝑡))︁]︁
= Π(𝑒,𝑡). (6)

Assume that conditions (i) and (iii’) are satisfied. Then, Π(𝑒,𝑡) ≥ Π(𝑒,0) ≥ (1 −
𝑇 (̂︀𝑒,̂︀𝑡))𝑃 (̂︀𝑒,̂︀𝑡,∅) for any (̂︀𝑒,̂︀𝑡) with ̂︀𝑒 ≤ 𝑒. Therefore, (6) is equivalent to

max
(̂︀𝑒,̂︀𝑡)∈{(𝑥,𝑦)∈[0,1]2:𝑥≤𝑒 and 𝜎(𝑒,𝑡)≥𝜎(𝑥,𝑦)}

[︁
(1 − 𝑇 (̂︀𝑒,̂︀𝑡))𝑃 (̂︀𝑒,̂︀𝑡; ∅) + 𝑇 (̂︀𝑒,̂︀𝑡)]︁

= Π(𝑒,𝑡). (7)

Given that Π(𝑒,𝑡) is non-decreasing in 𝑡 (condition (i)), (7) can equivalently be written as

max
𝑟∈[𝑒(𝜎(𝑒,𝑡)),𝑒]

{[1 − 𝑇 (𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡)))]𝑃 (𝑟,𝜏(𝑟,𝜎(𝑒,𝑡)),∅) + 𝑇 (𝑟,𝜏(𝑟,𝜎(𝑒,𝑡)))} = Π(𝑒,𝑡)

or equivalently,

𝑒 ∈ arg max
𝑟∈[𝑒(𝜎(𝑒,𝑡)),𝑒]

Π(𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡))). (8)

56That 𝑃 (𝑒,0,∅) = Π(𝑒,0) follows from 𝑇 (𝑒,0) = 0.
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Thus, IC is satisfied for every type if and only if for every (𝑒,𝑡), (8) is satisfied. This is
true if and only if Π(𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡))) is non-decreasing in 𝑟 for 𝑟 ∈ [𝑒(𝜎(𝑒,𝑡)),𝑒] for every
(𝑒,𝑡).

That the latter is sufficient for (8) to hold for every (𝑒,𝑡) is immediate. I show
necessity by showing the contrapositive. Assume that for some (𝑒,𝑡), Π(𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡))) is
not non-decreasing in 𝑟 for 𝑟 ∈ [𝑒(𝜎(𝑒,𝑡)),𝑒]. That is, for some (𝑒,𝑡) there exist 𝑟1, 𝑟2 with
𝑒(𝜎(𝑒,𝑡)) ≤ 𝑟1 < 𝑟2 ≤ 𝑒 such that Π(𝑟2, 𝜏(𝑟2,𝜎(𝑒,𝑡))) < Π(𝑟1, 𝜏(𝑟1,𝜎(𝑒,𝑡))). Then,

𝑟2 ̸∈ arg max
𝑥∈[𝑒(𝜎(𝑒,𝑡)),𝑟2]

Π(𝑥, 𝜏(𝑥,𝜎(𝑒,𝑡))).

Namely, IC of type (𝑟2, 𝜏(𝑟2,𝜎(𝑒,𝑡))) is violated, as she prefers to imitate type (𝑟1, 𝜏(𝑟1,𝜎(𝑒,𝑡))).
Step 4: It is easy to see that Π(𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡))) being non-decreasing in 𝑟 over 𝑟 ∈

[𝑒(𝜎(𝑒,𝑡)),𝑒] for every (𝑒,𝑡) is equivalent to condition (ii).
Step 5: Finally, notice that provided that conditions (i) and (ii) hold, conditions (iii)

and (iii’) are equivalent. That (iii’) implies (iii) is immediate. We will show that the
opposite direction also holds. Assume that conditions (i), (ii), and (iii) hold. Then, for
any 𝑒,𝑒′,𝑡 with 𝑒′ ≥ 𝑒

Π(𝑒′,0) ≥ Π(𝑒, 𝜏(𝑒,𝜎(𝑒′,0))) ≥ Π(𝑒,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅),

where the first inequality follows from condition (ii),57 the second from condition (i), and
the third from condition (iii). Q.E.D.

Proof of Lemma 3 Take any IC mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩. Condition (iii) of Proposition
1 says that Π(𝑒,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) for any (𝑒,𝑡). Then, construct the mechanism
𝑀 ′ := ⟨𝑇 ′,𝑃 ′⟩ with58

𝑇 ′(𝑒,𝑡) := Π(𝑒,𝑡) − Π(𝑒,0) = (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) + 𝑇 (𝑒,𝑡) − Π(𝑒,0)

≤ Π(𝑒,0) + 𝑇 (𝑒,𝑡) − Π(𝑒,0) = 𝑇 (𝑒,𝑡), and

𝑃 ′(𝑒,𝑡,∅) := Π(𝑒,0)
1 − Π(𝑒,𝑡) + Π(𝑒,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅)

1 − Π(𝑒,𝑡) + (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) = 𝑃 (𝑒,𝑡,∅)

for every (𝑒,𝑡), where the inequalities follow from Π(𝑒,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅).
By construction we have that Π′(𝑒,𝑡) = Π(𝑒,𝑡) for every (𝑒,𝑡), so 𝑀 ′ satisfies conditions

(i) and (ii) of Proposition 1. By construction, we also have that for every (𝑒,𝑡)

Π′(𝑒,0) = Π(𝑒,0) = (1 − 𝑇 ′(𝑒,𝑡))𝑃 ′(𝑒,𝑡,∅),
57The first inequality assumes that 𝑒 ≥ 𝑒(𝜎(𝑒′,0)). If this is not the case, using conditions (i) and (ii)

iteratively, we can still show that Π(𝑒′,0) ≥ Π(𝑒,0).
58For (𝑒,𝑡) such that Π(𝑒,𝑡) = 1 and Π(𝑒,0) = 0, set 𝑃 ′(𝑒,𝑡,∅) = 0.

42



so 𝑀 ′ also satisfies condition (iii) of Proposition 1. Therefore, 𝑀 ′ is IC.
Last, to see why the second part is true, notice that for 𝑐 > 0, 𝑀 ′ saves on testing costs

compared to 𝑀 if there exists (a positive measure of) (𝑒,𝑡) with 𝑃 (𝑒,𝑡,∅)(1 − 𝑇 (𝑒,𝑡)) <

Π(𝑒,0), since 𝑇 ′(𝑒,𝑡) < 𝑇 (𝑒,𝑡) for such (𝑒,𝑡). Q.E.D.

Proof of Lemmata 4 and 5 I prove the more general Lemma 5. It is useful to look
at the principal’s choice as a function Π(𝑒,𝜏(𝑒,𝑠)) of (𝑒,𝑠). The objective function (3)
is continuous and linear (and, thus, convex) in Π. By Bauer’s maximum principle, it
follows that there exists a maximizing function (𝑒,𝑠) → Π(𝑒,𝜏(𝑒,𝑠)) that is an extreme
point of the set of non-decreasing functions from {(𝑒,𝑠) ∈ [0,1]2 : 𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)]} to
[0,1].59 Last, a function (𝑒,𝑠) → Π(𝑒,𝜏(𝑒,𝑠)) is an extreme point of that set if and only if
Π(𝑒,𝜏(𝑒,𝑠)) ∈ {0,1} for all (𝑒,𝑠) is its domain.60 The proof of this part is analogous to the
one of Lemma 2.7 in Börgers (2015).

If direction: consider any non-decreasing (in 𝑒 and 𝑠) Π with Π(𝑒,𝜏(𝑒,𝑠)) ∈ {0,1} for all
(𝑒,𝑠), and take any function 𝑔 : {(𝑒,𝑠) ∈ [0,1]2 : 𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)]} → R such that 𝑔(𝑒*,𝑠*) ̸= 0
for some (𝑒*,𝑠*). If 𝑔(𝑒*,𝑠*) > 0 and Π(𝑒*,𝜏(𝑒*,𝑠*)) = 0, then Π(𝑒*,𝜏(𝑒*,𝑠*)) − 𝑔(𝑒*,𝑠*) < 0.
If 𝑔(𝑒*,𝑠*) > 0 and Π(𝑒*,𝜏(𝑒*,𝑠*)) = 1, then Π(𝑒*,𝜏(𝑒*,𝑠*)) + 𝑔(𝑒*,𝑠*) > 1. Similarly, if
𝑔(𝑒*,𝑠*) < 0 and Π(𝑒*,𝜏(𝑒*,𝑠*)) = 0, then Π(𝑒*,𝜏(𝑒*,𝑠*)) + 𝑔(𝑒*,𝑠*) < 0. If 𝑔(𝑒*,𝑠*) < 0
and Π(𝑒*,𝜏(𝑒*,𝑠*)) = 1, then Π(𝑒*,𝜏(𝑒*,𝑠*)) − 𝑔(𝑒*,𝑠*) > 1. Thus, Π is an extreme point.

Only if direction: now consider any non-decreasing (in 𝑒 and 𝑠) Π with Π(𝑒*,𝜏(𝑒*,𝑠*)) ̸∈
{0,1} for some (𝑒*,𝑠*). Construct function 𝑔 as follows. 𝑔(𝑒,𝑠) := Π(𝑒,𝜏(𝑒,𝑠)) for every
(𝑒,𝑠) such that Π(𝑒,𝜏(𝑒,𝑠)) ≤ 1/2 and 𝑔(𝑒,𝑠) := 1 − Π(𝑒,𝜏(𝑒,𝑠)) for every (𝑒,𝑠) such
that Π(𝑒,𝜏(𝑒,𝑠)) > 1/2. 𝑔(𝑒*,𝑠*) ∈ (0,1), so 𝑔 ̸= 0. Consider the function (𝑒,𝑠) ↦→
Π(𝑒,𝜏(𝑒,𝑠))+𝑔(𝑒,𝑠). Take any 𝑒1,𝑒2,𝑠 with 𝑒2 ≥ 𝑒1 and observe that if Π(𝑒2,𝜏(𝑒2,𝑠)) > 1/2,
then

Π(𝑒2,𝜏(𝑒2,𝑠)) + 𝑔(𝑒2,𝑠) = 1 ≥ Π(𝑒1,𝜏(𝑒1,𝑠)) + 𝑔(𝑒1,𝑠)

since by construction Π(𝑒,𝜏(𝑒,𝑠)) + 𝑔(𝑒,𝑠) ≤ 1 for every (𝑒,𝑠), while if Π(𝑒2,𝜏(𝑒2,𝑠)) ≤ 1/2,
then (since Π is non-decreasing) Π(𝑒1,𝜏(𝑒1,𝑠)) ≤ Π(𝑒2,𝜏(𝑒2,𝑠)) ≤ 1/2, and so

Π(𝑒2,𝜏(𝑒2,𝑠)) + 𝑔(𝑒2,𝑠) = 2Π(𝑒2,𝜏(𝑒2,𝑠)) ≥ 2Π(𝑒1,𝜏(𝑒1,𝑠)) = Π(𝑒1,𝜏(𝑒1,𝑠)) + 𝑔(𝑒1,𝑠).

Similarly, it can be seen that Π(𝑒,𝜏(𝑒,𝑠2)) + 𝑔(𝑒,𝑠2) ≥ Π(𝑒,𝜏(𝑒,𝑠1)) + 𝑔(𝑒,𝑠1) for any
𝑠1,𝑠2,𝑒 with 𝑠2 ≥ 𝑠1. Also Π(𝑒,𝜏(𝑒,𝑠)) + 𝑔(𝑒,𝑠) ∈ [0,1] for every (𝑒,𝑠). Therefore, the
function (𝑒,𝑠) ↦→ Π(𝑒,𝜏(𝑒,𝑠)) + 𝑔(𝑒,𝑠) lies in the set of non-decreasing functions from
{(𝑒,𝑠) ∈ [0,1]2 : 𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)]} to [0,1]. Similarly, it can be seen that the function
(𝑒,𝑠) ↦→ Π(𝑒,𝜏(𝑒,𝑠)) − 𝑔(𝑒,𝑠) lies in the set of non-decreasing functions from {(𝑒,𝑠) ∈ [0,1]2 :

59Observe that this set of functions is convex and compact in the norm topology.
60More precisely, this should hold for almost all (𝑒,𝑠) is its domain (see Börgers, 2015).
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𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)]} to [0,1]. Thus, Π is not an extreme point. Q.E.D.

Proof of Claims 1 and 2 The first part is immediate. The total derivative of 𝑢(𝑒,𝜏(𝑒,𝑠))
with respect to 𝑒 is equal to

𝑑𝑢(𝑒,𝜏(𝑒,𝑠))
𝑑𝑒

= 𝜕𝑢(𝑒,𝜏(𝑒,𝑠))
𝜕𝑒

+ 𝜕𝜏(𝑒,𝑠)
𝜕𝑒

𝜕𝑢(𝑒,𝑡)
𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡=𝜏(𝑒,𝑠)

= 𝜕𝑢(𝑒,𝑡)
𝜕𝑒

+ 𝜕𝜎(𝑒,𝑡)/𝜕𝑒

𝜕𝜎(𝑒,𝑡)/𝜕𝑡

𝜕𝑢(𝑒,𝑡)
𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡=𝜏(𝑒,𝑠)

,

and the second part follows. Q.E.D.

Proof of Proposition 2 We need to show that Π(𝑒,𝑡) = I (𝑢(𝑒,𝑡) > 0) satisfies condi-
tions (i) and (ii) of Proposition 1.

Condition (i): Since Π(𝑒,𝑡) ∈ {0,1} for every (𝑒,𝑡), it suffices to show that for any (𝑒,𝑡),
if Π(𝑒,𝑡) = 1, then Π(𝑒,𝑡′) = 1 for every 𝑡′ ≥ 𝑡. Indeed, we have that for any (𝑒,𝑡)

Π(𝑒,𝑡) = 1 =⇒ 𝑢(𝑒,𝑡) > 0 =⇒ 𝑢(𝑒,𝑡′) > 0 for every 𝑡′ ≥ 𝑡,

where the second implication follows since 𝑢(𝑒,𝑡) is non-decreasing in 𝑡.
Condition (ii): Similarly, it suffices to show that for any (𝑟,𝑠), if Π(𝑟,𝜏(𝑟,𝑠)) = 1, then

Π(𝑟′,𝜏(𝑟′,𝑠)) = 1 for every 𝑟′ ∈ [𝑟, 𝑒(𝑠)]. Indeed, we have that for any (𝑟,𝑠), Π(𝑟,𝜏(𝑟,𝑠)) = 1
implies that 𝑢(𝑟,𝜏(𝑟,𝑠)) > 0, which in turn implies that 𝑢(𝑟′,𝜏(𝑟′,𝑠)) > 0 for every
𝑟′ ∈ [𝑟, 𝑒(𝑠)].

To see why the last part follows, assume instead that 𝑢(𝑟′,𝜏(𝑟′,𝑠)) ≤ 0 for some
𝑟′ ∈ [𝑟, 𝑒(𝑠)]. Particularly, it must be 𝑟′ > 𝑟. Since 𝜎 is pro-𝑡 biased, there exists 𝑒𝑠 such
that if 𝑒 > 𝑒𝑠 (resp. 𝑒 ≤ 𝑒𝑠) and 𝜎(𝑒,𝑡) = 𝑠, then 𝑢(𝑒,𝑡) > 0 (resp. 𝑢(𝑒,𝑡) ≤ 0). We
have that 𝑢(𝑟′,𝜏(𝑟′,𝑠)) ≤ 0, so 𝜎 being pro-𝑡 biased implies that 𝑟′ ≤ 𝑒𝑠. But 𝑟′ > 𝑟, so
𝑟 < 𝑒𝑠, and since 𝜎(𝑟,𝜏(𝑟,𝑠)) = 𝑠, 𝜎 being pro-𝑡 biased implies that 𝑢(𝑟,𝜏(𝑟,𝑠)) ≤ 0, a
contradiction. Q.E.D.

Proof of Proposition 3 Step 1: In definition 4 of pro-𝑒 biased testing, for 𝑠 such that
𝑢(𝑒,𝑡) > 𝑐 = 0 (resp. 𝑢(𝑒,𝑡) ≤ 0) for every (𝑒,𝑡) ∈ 𝐼𝜎(𝑠), 𝑒𝑠 is not uniquely defined. In that
case, for 𝑠 such that 𝑢(𝑒,𝑡) > 0 (resp. 𝑢(𝑒,𝑡) ≤ 0) for every (𝑒,𝑡) ∈ 𝐼𝜎(𝑠), set 𝑒𝑠 = 𝑒(𝑠)
(resp. 𝑒𝑠 = 𝑒(𝑠)). We will show that (under pro-𝑒 biased testing) 𝑒𝑠 is non-decreasing in 𝑠.
Take any 𝑠,𝑠 ∈ [0,1] with 𝑠 > 𝑠, and define 𝑆 := (𝑒𝑠,𝑒𝑠) ∩ [𝑒(𝑠), 𝑒(𝑠)] ∩ [𝑒(𝑠), 𝑒(𝑠)].

Step 1, case 1: If 𝑆 = ∅, then 𝑒𝑠 ≤ 𝑒𝑠. To see this, consider the following two subcases.
Step 1, case 1(a): if 𝑒(𝑠) ≥ 𝑒(𝑠), then 𝑒𝑠 ≤ 𝑒(𝑠) ≤ 𝑒(𝑠) ≤ 𝑒𝑠, so 𝑒𝑠 ≤ 𝑒𝑠, a contradiction.
Step 1, case 1(b): if 𝑒(𝑠) < 𝑒(𝑠), then 𝑆 = (𝑒𝑠,𝑒𝑠) ∩ [𝑒(𝑠), 𝑒(𝑠)]. Since 𝑆 = ∅, either

𝑒(𝑠) ≥ 𝑒𝑠 or 𝑒(𝑠) ≤ 𝑒𝑠. If 𝑒(𝑠) ≥ 𝑒𝑠, then 𝑒𝑠 ≤ 𝑒(𝑠) ≤ 𝑒𝑠, so 𝑒𝑠 ≤ 𝑒𝑠, a contradiction.
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Similarly, if 𝑒(𝑠) ≤ 𝑒𝑠, then 𝑒𝑠 ≤ 𝑒(𝑠) ≤ 𝑒𝑠, so 𝑒𝑠 ≤ 𝑒𝑠, a contradiction.
Step 1, case 2: We now prove by contradiction that if 𝑆 ̸= ∅, then 𝑒𝑠 ≤ 𝑒𝑠. To this

end, assume that 𝑆 ≠ ∅ and 𝑒𝑠 > 𝑒𝑠. Given that 𝑆 ̸= ∅, we can take some 𝑒* ∈ 𝑆. Since
𝑒* ∈ [𝑒(𝑠), 𝑒(𝑠)] and 𝜎 is continuous, there exists 𝑡* ∈ [0,1] such that 𝜎(𝑒*,𝑡*) = 𝑠. Since
𝜎 is pro-𝑒 biased and 𝑒* < 𝑒𝑠, it follows that 𝑢(𝑒*,𝑡*) > 0. Similarly, since 𝜎 is pro-𝑒
biased, 𝑒* > 𝑒𝑠, and 𝑒* ∈ [𝑒(𝑠), 𝑒(𝑠)], there exists 𝑡** ∈ [0,1] such that 𝜎(𝑒*,𝑡**) = 𝑠 and
𝑢(𝑒*,𝑡**) ≤ 0. Also, because 𝑠 > 𝑠 and 𝜎(𝑒,𝑡) is increasing in 𝑡, 𝑡** > 𝑡*. Overall, we have
𝑡** > 𝑡* and 𝑢(𝑒*,𝑡*) > 0 ≥ 𝑢(𝑒*,𝑡**), a contradiction to 𝑢(𝑒,𝑡) being non-decreasing in 𝑡.

Step 2: Given 𝑒𝑠, define also 𝑡𝑠 implicitly given by 𝜎(𝑒𝑠,𝑡𝑠) = 𝑠. We have then that for
every test score 𝑠 ∈ [0,1], (𝑒𝑠,𝑡𝑠) is the “threshold” agent that lies on the iso-test-score
curve 𝐼𝜎(𝑠). That is, any other agent (𝑒,𝑡) on that iso-test-score curve with 𝑒 < 𝑒𝑠 (resp.
𝑒 > 𝑒𝑠) gives—if rewarded—a positive (resp. negative) payoff to the principal.

We divide the problem of finding an optimal IC mechanism in three parts. First, we fix
an arbitrary “partial” IC mechanism 𝑠 ↦→ Π(𝑒𝑠,𝑡𝑠) for every 𝑠 ∈ [0,1]. Then, we complete
that partial IC mechanism (i.e., we assign a value to Π(𝑒,𝑡) for every (𝑒,𝑡) for which Π(𝑒,𝑡)
has no been assigned a value in the first step), so that the complete mechanism is IC and
optimal given the fixed partial mechanism. Finally, we find an optimal partial mechanism.

Step 3: Fix the value of Π(𝑒𝑠,𝑡𝑠) for every 𝑠 ∈ [0,1] such that these values are part of
some IC mechanism.61 Given that 𝑒𝑠 is non-decreasing in 𝑠, by Proposition 1, the values
of Π(𝑒𝑠,𝑡𝑠) are part of some IC mechanism if and only if Π(𝑒𝑠,𝑡𝑠) is non-decreasing in 𝑠.
Therefore, by Proposition 5, there exists an optimal mechanism with Π(𝑒𝑠,𝑡𝑠) = I(𝑠 ≥ 𝑠)
for some 𝑠 ∈ [0,1].

Step 4: It follows then that for IC to be satisfied by the complete mechanism, it must
be that (i) Π(𝑒,𝑡) = 1 for every (𝑒,𝑡) such that 𝑒 > 𝑒𝑠 and 𝜎(𝑒,𝑡) = 𝑠 for some 𝑠 ≥ 𝑠 and
(ii) Π(𝑒,𝑡) = 0 for every (𝑒,𝑡) such that 𝑒 < 𝑒𝑠 and 𝜎(𝑒,𝑡) = 𝑠 for some 𝑠 < 𝑠. Also, since
(𝑒𝑠,𝑡𝑠) is the “threshold” agent, the principal wants to make Π(𝑒,𝑡) as high (resp. low) as
possible for every (𝑒,𝑡) such that 𝑒 < 𝑒𝑠 (resp. 𝑒 > 𝑒𝑠). Thus, given the IC constraint, it is
optimal to set (i) Π(𝑒,𝑡) = 1 for every (𝑒,𝑡) such that 𝑒 < 𝑒𝑠 and 𝜎(𝑒,𝑡) = 𝑠 for some 𝑠 ≥ 𝑠

and (ii) Π(𝑒,𝑡) = 0 for every (𝑒,𝑡) such that 𝑒 > 𝑒𝑠 and 𝜎(𝑒,𝑡) = 𝑠 for some 𝑠 < 𝑠. Q.E.D.

Proof of Proposition 4 By IC conditions (i) and (ii) of Proposition 1, any IC mechanism
has Π(𝑒,0) non-decreasing in 𝑒. Thus, given Lemma 5, there exists an optimal mechanism
with Π(𝑒,0) = I(𝑒 ≥ 𝑒*) for some 𝑒* ∈ [0,1]. The objective function (3) then becomes

∫︁ 1

0

∫︁ min{𝑒(𝑠),𝑒*}

min{𝑒(𝑠),𝑒*}
[Π(𝑒,𝜏(𝑒,𝑠))(𝑢(𝑒,𝜏(𝑒,𝑠)) − 𝑐)] 𝑓(𝑒,𝜏(𝑒,𝑠))𝑑𝑒𝑑𝑠

+
∫︁ 1

0

∫︁ 1

𝑒*
𝑢(𝑒,𝑡)𝑓(𝑒,𝑡)𝑑𝑒𝑑𝑡.

61That is, fix the value of Π(𝑒𝑠,𝑡𝑠) for every 𝑠 ∈ [0,1] to be such that there exists IC Π : [0,1]2 → [0,1]
that agrees with the values of Π(𝑒𝑠,𝑡𝑠) for every 𝑠 ∈ [0,1].
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The mechanism affects the second term only through 𝑒*. Given 𝑒*, setting Π(𝑒,𝑡) =
I (𝑢(𝑒,𝑡) > 𝑐 or 𝑒 ≥ 𝑒*) maximizes the first term and—given that 𝜎 is pro-𝑡 biased—makes
the mechanism IC, since it satisfies conditions (i) and (ii) of Proposition 1. 𝑇 (𝑒,𝑡) =
I(𝑢(𝑒,𝑡) ≥ 𝑐 and 𝑒 < 𝑒*) is backed out from Lemma 5. Q.E.D.

Proof of Proposition 5 By IC conditions (i) and (ii) of Proposition 1, any IC mechanism
has Π(𝑒,0) non-decreasing in 𝑒. Thus, given Lemma 5, there exists an optimal mechanism
with Π(𝑒,0) = I(𝑒 ≥ 𝑒*) for some 𝑒* ∈ [0,1]. The objective function (3) then becomes

∫︁ 1

0

∫︁ min{𝑒(𝑠),𝑒*}

min{𝑒(𝑠),𝑒*}
[Π(𝑒,𝜏(𝑒,𝑠))(𝑢(𝑒,𝜏(𝑒,𝑠)) − 𝑐)] 𝑓(𝑒,𝜏(𝑒,𝑠))𝑑𝑒𝑑𝑠

+
∫︁ 1

0

∫︁ 1

𝑒*
𝑢(𝑒,𝑡)𝑓(𝑒,𝑡)𝑑𝑒𝑑𝑡.

The mechanism affects the second term only through 𝑒*. Given 𝑒*, maximizing the first
term is equivalent to the problem studied by Proposition 3 with the principal’s payoff
function given by 𝑢(𝑒,𝑡) − 𝑐. Thus, for 𝑒 < 𝑒*, Π(𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠* for some 𝑠* ∈ [0,1]
maximizes the first term (under the IC conditions, when the problem is restricted to
(𝑒,𝑡) < (𝑒*,1)). The complete mechanism then has Π(𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠* or 𝑒 ≥ 𝑒*),
which satisfies conditions (i) and (ii) of Proposition 1. 𝑇 (𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠* and 𝑒 < 𝑒*)
is backed out from Lemma 5. Q.E.D.

Proof of Proposition 6 Trivial, and, thus, omitted.

Proof of Proposition 7 Denote the total probability with which type (𝑒,𝑡) is rewarded
if she reports (̂︀𝑒,̂︀𝑡) (with ̂︀𝑒 ≤ 𝑒) by

̃︀𝑃 (̂︀𝑒,̂︀𝑡; 𝑒,𝑡) := (1 − 𝑇 (̂︀𝑒,̂︀𝑡))𝑃 (̂︀𝑒,̂︀𝑡,∅) + 𝑇 (̂︀𝑒,̂︀𝑡)I (︁
𝜎(𝑒,𝑡) ≥ 𝜎(̂︀𝑒,̂︀𝑡))︁

.

Also, define condition (iii’) (a strengthening of condition (iii)) to say that (1 −
𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) ≤ Π(𝑒′,0) for every 𝑒,𝑡,𝑒′.

Step 1: I first show that condition (i) is necessary for IC by showing the contrapositive.
Assume that for some 𝑒,𝑡1,𝑡2 with 𝑡2 > 𝑡1, Π(𝑒,𝑡2) < Π(𝑒,𝑡1). Then, IC of type (𝑒,𝑡2) is
violated, since ̃︀𝑃 (𝑒,𝑡1; 𝑒,𝑡2) = Π(𝑒,𝑡1) > Π(𝑒,𝑡2).

Step 2: I now show that condition (iii’) is necessary for IC by showing the contrapositive.
Assume that for some 𝑒,𝑒′,𝑡, (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) > Π(𝑒′,0). Then, IC of type (𝑒′,0) is
violated, since ̃︀𝑃 (𝑒,𝑡; 𝑒′,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) > Π(𝑒′,0).

Step 3: I now show that provided that (i) and (iii’) are satisfied, Π(𝑟, 𝜏 (𝑟,𝜎(𝑒,𝑡))) being
constant in 𝑟 over 𝑟 ∈ [𝑒(𝜎(𝑒,𝑡)),𝑒] for every (𝑒,𝑡) is necessary and sufficient for IC.
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IC of type (𝑒,𝑡) is satisfied if and only if

max
(̂︀𝑒,̂︀𝑡)≤(1,1)

[︁
(1 − 𝑇 (̂︀𝑒,̂︀𝑡))𝑃 (̂︀𝑒,̂︀𝑡; ∅) + 𝑇 (̂︀𝑒,̂︀𝑡)I (︁

𝜎(𝑒,𝑡) ≥ 𝜎(̂︀𝑒,̂︀𝑡))︁]︁
= Π(𝑒,𝑡). (9)

Assume that conditions (i) and (iii’) are satisfied. Then, Π(𝑒,𝑡) ≥ Π(𝑒,0) ≥ (1 −
𝑇 (̂︀𝑒,̂︀𝑡))𝑃 (̂︀𝑒,̂︀𝑡,∅) for any (̂︀𝑒,̂︀𝑡). Therefore, (9) is equivalent to

max
(̂︀𝑒,̂︀𝑡)∈{(𝑥,𝑦)∈[0,1]2:𝜎(𝑒,𝑡)≥𝜎(𝑥,𝑦)}

[︁
(1 − 𝑇 (̂︀𝑒,̂︀𝑡))𝑃 (̂︀𝑒,̂︀𝑡; ∅) + 𝑇 (̂︀𝑒,̂︀𝑡)]︁

= Π(𝑒,𝑡). (10)

Given that Π(𝑒,𝑡) is non-decreasing in 𝑡 (condition (i)), (10) can equivalently be written as

max
𝑟∈[𝑒(𝜎(𝑒,𝑡)),1]

{[1 − 𝑇 (𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡)))]𝑃 (𝑟,𝜏(𝑟,𝜎(𝑒,𝑡)),∅) + 𝑇 (𝑟,𝜏(𝑟,𝜎(𝑒,𝑡)))} = Π(𝑒,𝑡)

or equivalently,

𝑒 ∈ arg max
𝑟∈[𝑒(𝜎(𝑒,𝑡)),𝑒(𝜎(𝑒,𝑡))]

Π(𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡))). (11)

Thus, IC is satisfied for every type if and only if for every (𝑒,𝑡), (11) is satisfied. This is
true if and only if Π(𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡))) is constant in 𝑟 for 𝑟 ∈ [𝑒(𝜎(𝑒,𝑡)),𝑒(𝜎(𝑒,𝑡))] for every
(𝑒,𝑡).

That the latter is sufficient for (11) to hold for every (𝑒,𝑡) is immediate. I show necessity
by showing the contrapositive. Assume that for some (𝑒,𝑡), Π(𝑟, 𝜏 (𝑟,𝜎(𝑒,𝑡))) is not constant
in 𝑟 for 𝑟 ∈ [𝑒(𝜎(𝑒,𝑡)),1]. That is, for some (𝑒,𝑡) there exist 𝑟1, 𝑟2 with 𝑒(𝜎(𝑒,𝑡)) ≤ 𝑟1 <

𝑟2 ≤ 𝑒(𝜎(𝑒,𝑡)) such that Π(𝑟2, 𝜏(𝑟2,𝜎(𝑒,𝑡))) ̸= Π(𝑟1, 𝜏(𝑟1,𝜎(𝑒,𝑡))). If Π(𝑟2, 𝜏(𝑟2,𝜎(𝑒,𝑡))) <

Π(𝑟1, 𝜏(𝑟1,𝜎(𝑒,𝑡))), IC of type (𝑟2, 𝜏(𝑟2,𝜎(𝑒,𝑡))) is violated, as she prefers to imitate
type (𝑟1, 𝜏(𝑟1,𝜎(𝑒,𝑡))). If, instead, Π(𝑟2, 𝜏(𝑟2,𝜎(𝑒,𝑡))) > Π(𝑟1, 𝜏(𝑟1,𝜎(𝑒,𝑡))), IC of type
(𝑟1, 𝜏(𝑟1,𝜎(𝑒,𝑡))) is violated, as she prefers to imitate type (𝑟2, 𝜏(𝑟2,𝜎(𝑒,𝑡))).

Step 4: It is easy to see that Π(𝑟, 𝜏 (𝑟,𝜎(𝑒,𝑡))) being constant in 𝑟 over 𝑟 ∈ [𝑒(𝜎(𝑒,𝑡)),𝑒(𝜎(𝑒,𝑡))]
for every (𝑒,𝑡) is equivalent to condition (ii).

Step 5: Finally, notice that provided that conditions (i) and (ii) hold, conditions (iii)
and (iii’) are equivalent. Q.E.D.

Proof of Lemma 6 Take any IC mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩. Condition (iii) of Proposition
1 says that Π(0,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) for any (𝑒,𝑡). Then, construct the mechanism
𝑀 ′ := ⟨𝑇 ′,𝑃 ′⟩ with62

𝑇 ′(𝑒,𝑡) := Π(𝑒,𝑡) − Π(0,0) = (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) + 𝑇 (𝑒,𝑡) − Π(0,0)

≤ Π(0,0) + 𝑇 (𝑒,𝑡) − Π(0,0) = 𝑇 (𝑒,𝑡), and
62If Π(0,0) = 0, then for (𝑒,𝑡) such that Π(𝑒,𝑡) = 1, set 𝑃 ′(𝑒,𝑡,∅) = 0.
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𝑃 ′(𝑒,𝑡,∅) := Π(0,0)
1 − Π(𝑒,𝑡) + Π(0,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅)

1 − Π(𝑒,𝑡) + (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) = 𝑃 (𝑒,𝑡,∅)

for every (𝑒,𝑡), where the inequalities follow from Π(0,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅).
By construction we have that Π′(𝑒,𝑡) = Π(𝑒,𝑡) for every (𝑒,𝑡), so 𝑀 ′ satisfies conditions

(i) and (ii) of Proposition 7. By construction, we also have that for every (𝑒,𝑡)

Π′(0,0) = Π(0,0) = (1 − 𝑇 ′(𝑒,𝑡))𝑃 ′(𝑒,𝑡,∅),

so 𝑀 ′ also satisfies condition (iii) of Proposition 7. Therefore, 𝑀 ′ is IC.
Last, to see why the second part is true, notice that for 𝑐 > 0, 𝑀 ′ saves on testing costs

compared to 𝑀 if there exists (a positive measure of) (𝑒,𝑡) with 𝑃 (𝑒,𝑡,∅)(1 − 𝑇 (𝑒,𝑡)) <

Π(0,0), since 𝑇 ′(𝑒,𝑡) < 𝑇 (𝑒,𝑡) for such (𝑒,𝑡). Q.E.D.
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