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Abstract

A principal must decide whether to accept or reject an agent. The principal can
verify at a cost the value of a composite measure of the agent’s training and talent.
The measure does not reveal training or talent separately. The agent can present
evidence of training but not of talent. Although favorable, evidence can make the
principal attribute the value of the composite measure to training, thereby negatively
affecting his assessment of the agent’s talent. Thus, verification may distort the
agent’s incentives to present evidence. Indeed, when the composite measure is less
sensitive to talent than talent is valuable to the principal, the optimal mechanism
never asks for evidence an agent whose composite measure it verifies. In the optimal
mechanism, errors favoring high- over low-training agents arise because (i) verifica-
tion creates incentives for the agent to withhold evidence of training and (ii) the
principal saves on verification costs by accepting high-training agents without verify-
ing the composite measure. The two forces are complements in inducing these errors.
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“My plan was to leave one copy [of textbooks| at home and one at school. This
was less about the inconvenience of carrying books back and forth than it was
about appearing as if I didn’t need to study at home. [...] I went home each
day conspicuously empty-handed. At night, holed up in my bedroom with
my duplicate textbooks, I solved and re-solved every quadratic equation, I
memorized Latin declensions and reviewed names, dates, history of all those
Greek wars and battles and gods and goddesses. The next day, I'd arrive
at school fortified with all that I had learned but no indication that I had
studied.”

—Bill Gates, Source Code: My Beginnings (2025)

1 Introduction

In many settings, a candidate’s suitability for a position depends on multiple valuable
qualities, such as education, training, knowledge, intelligence, or adaptability. The
candidate has hard evidence on some qualities (e.g., education) but not others (e.g.,
intelligence). I refer to the qualities that the candidate has evidence on as training and
the ones that she does not have evidence on as talent. While the evaluator cannot ask for
evidence of talent, he can however try to verify talent at a cost. Nevertheless, in many
cases, the evaluator cannot verify talent in isolation; instead, he can verify the value of a
composite measure of training and talent without being able to disentangle the individual
contribution of each of the two to the composite measure. For instance, standardized
college admission tests pick up a combination of talent and training. Evidence of training
is then critical when the evaluator tries to extract information about the candidate’s
talent through the composite measure.

However, the candidate may strategically withhold evidence of training to make the
evaluator attribute the composite measure to talent instead of training. For example, a
college applicant may downplay her training and parental support to portray her academic
performance and standardized test scores as results of her brilliance. A job candidate
might downplay her background to make the employer attribute her achievements and
pre-employment test results to talent. An employee may hide how hard she works by
working from home rather than the office to make the employer attribute her productivity
to talent and promote her. An academic on the job market may strategically withhold
certain results she has derived, saving them to answer audience questions later to appear
exceptionally adept at thinking on her feet.

The above examples suggest that although presenting all her evidence of training is,
in principle, in the candidate’s best interest, her incentives to present evidence may be

distorted if the evaluator has access to a composite measure of the candidate’s training



and talent. Thus, there can be a conflict between the two evaluation tools: (i) verifying a
composite measure of talent and training and (ii) asking for evidence of training. Under
what circumstances does the conflict arise? When it does, how does the evaluator use
evidence and verification to optimally evaluate the candidate while taking the conflict
into account? These are the questions that this paper aims to answer.

I pursue them in the following principal-agent setting. The agent has a bidimensional
type. The first dimension is her training and the second is her talent.! The agent has hard
evidence of training. The evidence an agent with higher training has is a proper superset
of the evidence an agent with lower training has. Thus, the agent can present evidence to
prove any part of her training but cannot prove she is not withholding evidence; that is,
she cannot prove her training is not higher than the evidence she has presented suggests.
This means that, effectively, the agent can under-report but not over-report training. She
cannot unilaterally prove anything about her talent.

The principal’s payoff from accepting the agent (i) is non-decreasing in both training
and talent and (ii) can be positive or negative. The principal ultimately wants to decide
whether to accept or reject the agent (and receive payoff 0 in the latter case). He does so
by committing to a mechanism that asks the agent to (i) present evidence of training and
(i) make a cheap talk statement about her talent. Conditional on the evidence presented
and the cheap talk statement made, the principal then (i) either pays a fixed cost to verify
the value of a composite measure of the agent’s training and talent and then accepts or
rejects her conditional on that value or (ii) makes the acceptance or rejection decision
without verification. The mapping from the agent’s type to the (scalar) composite measure
is exogenous and increasing in training and talent. The agent wants to get accepted
independently of her type.

Whether verification distorts the agent’s incentives to present evidence of training
depends crucially on the comparison between the principal’s (acceptance payoff’s) marginal
rate of substitution of talent for training (MRS) and the MRS of the composite measure. I
say that the composite measure is talent-biased if the principal’s MRS is higher in absolute
value than the composite measure’s MRS. This means that the composite measure is more
sensitive to talent than talent is valuable to the principal-—and conversely, less sensitive
to training than training is valuable to the principal. In the opposite case, I say that the
composite measure is training-biased.

I show that if the composite measure is talent-biased, verification does not create
incentives for the agents to withhold evidence, so that the principal can ask for evidence
and at the same time verify the value of the composite measure without having to worry

about the agent withholding evidence. The main result concerns the optimal mechanism

L Although training is plausibly endogenous in some cases (e.g., when a college admissions committee
decides whether to admit an applicant who can choose to withhold evidence of effort and preparation), I
solve the problem for exogenous training. Section 6.3 endogenizes training.



in the opposite case: when the composite measure is training-biased. In that case, the
optimal evaluation scheme never combines evidence and verification in the evaluation of
an agent. Rather, it asks for evidence of training only to accept a high-training agent
without verification. The optimal mechanism favors high- over low-training agents. It
accepts some high-training agents—including unworthy agents who give the principal a
negative payoff when accepted—without verifying their composite measure but rather
only by asking them for a certain level of evidence of training. Among agents who do not
meet that level of evidence, (i) it accepts after verification some unworthy agents with
high training but low talent, although the payoff from accepting them does not cover the
verification cost, and (ii) it rejects some worthy agents with high talent but low training,
although the payoff from accepting them would exceed the verification cost.

Remarkably, this is the structure of the optimal mechanism in the extreme case where
the principal only values talent (i.e., his payoff for accepting the agent is increasing in
talent and constant in training). In that case, the composite measure is automatically
training-biased. The principal still optimally favors high-training agents even though
training is worthless to him. He does so because of two forces: (i) to save on verification
costs by accepting high-training agents without verifying their composite measure and
(ii) due to the strategic incentives of agents to withhold evidence of training when the
principal verifies the value of a training-biased composite measure.

There is an important interaction between these two forces. Each of the two forces
individually causes the principal to optimally favor high- over low-training agents. Namely,
when the composite measure is talent-biased—in which case the second force is absent—the
cost of verification induces the principal to accept some high-training agents, including
unworthy ones, without verification. Similarly, when the composite measure is training-
biased, the optimal mechanism makes errors favoring high- over low-training agents even
when verification is free. When the two forces are combined (i.e., the composite measure
is training-biased and verification is costly), the second force reduces the effectiveness of
verification. This causes the principal to accept even more agents without verification to
save on verification costs, thereby exacerbating the errors the principal makes by accepting
agents without verification. The two forces are complements in inducing errors favoring
high- over low-training agents.

The results capture a stark contrast in the difficulty of hiring different types of
employees. When training (that can be proven through hard evidence) is most valuable,
the composite measure is likely talent-biased, so the hiring process is easy. On the other
hand, when talent is most valuable, the hiring process is flawed, favoring candidates with
high training at the expense of more valuable candidates with great talent but limited
training.

The results have implications for hiring, promotions, and college admissions. In the

context of promotions, training can be understood as the employee’s effort, and talent as



her efficiency or managerial skills. The employer can verify the employee’s productivity
in the current position. The employer’s payoff from promoting the employee is the
difference between her productivity in the new position and her productivity in the current
position.? Tt is natural to assume that efficiency and managerial skills are more important
in the higher than in the current position. Then, the composite measure (i.e., current
productivity) is effort-biased. The optimal promotion scheme thus promotes some hard-
working employees—either with or without monitoring their productivity—although their
promotion destroys firm value. At the same time, some talented but less hard-working
employees are not promoted, although their promotion would benefit the firm.

Consider, now, hiring by a prestigious employer. Training is the candidate’s background
and education, and talent is her ability and drive not captured by training. Verification
amounts to letting a less prestigious employer hire the candidate with the option to poach
the candidate later at a cost (additional to the cost of hiring her from the beginning),
after observing her performance with that employer. In the optimal mechanism, Ivy-
Leaguers—including unworthy ones—are immediately hired by prestigious employers,
whereas worthy candidates with less impressive credentials go through less prestigious
employers to prove their worth before landing a prestigious position. If the candidates’
performance is more sensitive to talent in the more prestigious position than in the less
prestigious one, then the composite measure (i.e., performance in the less prestigious
position) is training-biased, so the prestigious employer makes errors also in the poaching
stage. This means that worthy candidates with low credentials are at a disadvantage not
only in the first stage of hiring by the prestigious employer but also in the poaching stage.

Lastly, the results have implications for affirmative action in college admissions (i.e.,
screening for talent, controlling for applicants’ unequal backgrounds). Affirmative action is
not very effective if both of the following conditions are satisfied: (i) College applicants can
to a large extent withhold evidence of their socioeconomic background, preparation, and
parental support and (ii) standardized test scores reflect talent (relative to background,
preparation, and parental support) less than colleges value talent. If both conditions hold,
the optimal admissions policy requires roughly the same test score from every applicant
for admission—regardless of background. However, if any of the two conditions fails,
affirmative action is effective, and imposing constraints on it would compromise colleges’
ability to screen for talent.

The hiring and college admissions applications illustrate how inequalities can be perpet-
uated. When standardized tests are training-biased, college applicants with superior access
to high-quality education and extensive preparation have an advantage over more worthy
candidates from disadvantaged backgrounds. Upon graduation, those from prestigious

institutions have an advantage in the labor market over more worthy candidates from less

2This normalizes the payoff from rejecting the employee (i.e., keeping her in her current position) to
Zero.



prestigious institutions.

After a discussion of related literature, section 2 presents the model. Section 3
characterizes the optimal screening mechanism. Section 4 discusses the results, and section
5 discusses applications. Section 6 studies extensions of the model. Section 7 concludes.

Proofs are gathered in the Appendix.

Related literature. The urge to withhold favorable evidence of training to make people
overestimate one’s talent is so fundamental that children also seem to follow it when they
eagerly proclaim how little they have studied for an exam. University students have also
been found to deliberately hide how hard they study to project an image of “effortless
perfection” (Travers et al., 2015; Casale et al., 2016). Despite how fundamental this way of
thinking is, to the best of my knowledge, no prior work has studied the following problem:
evaluating people who may strategically withhold evidence on one of their qualities that
both (i) is, in principle, favorable to them and (ii) contains useful information for the
evaluator in order to influence how the evaluator interprets a composite measure of their
various qualities.

Nevertheless, this paper has connections to several strands of the literature. It
contributes to the multidimensional screening literature (Armstrong, 1996; Rochet and
Choné, 1998; Rochet and Stole, 2003). Although duality approaches have proven useful in
verifying a mechanism’s optimality (Rochet and Choné, 1998; Carroll, 2017; Daskalakis
et al., 2017; Cai et al., 2019), full characterizations of multidimensional screening problems
remain challenging. Partial characterizations have, for example, been obtained (i) for
the case where the principal can use costly instruments in screening (Yang, 2025a) or (ii)
that derive sufficient conditions for menus with specific characteristics to be optimal for a
multiproduct monopolist (Haghpanah and Hartline, 2021; Yang, 2025b). The solution to
the multiproduct monopolist’s problem is famously elusive and complex. The optimal
mechanism may use lotteries (Manelli and Vincent, 2006), possibly uncountably many
of them (Daskalakis et al., 2017). Even in the case of two goods with additive and
independent values, the optimal mechanism is unknown except for some special cases
(Manelli and Vincent, 2006).

I propose a novel multidimensional screening problem with a remarkably simple
solution. Unlike in the monopolist’s screening problem, in this model, different agent types
have largely aligned preferences over alternative allocations: All types prefer acceptance
over rejection. An agent’s type affects her preferences only through its effect on her
preferences over how acceptance or rejection decisions depend on the composite measure:
Agents with a higher composite measure benefit more by mechanisms that reward high
composite measures with high acceptance probabilities. This is a fundamental reason
why the technical issues in this setting are different and, ultimately, more tractable than

those in the monopolist’s multidimensional screening problem. Another difference from



multidimensional monopolistic screening is that in this paper, agents have hard evidence
for one dimension of their type. However, as seen through a comparison of sections 3 and
6.1.3, this feature of the model complicates rather than simplifies the principal’s problem.

My analysis does not rely on ironing procedures (Mussa and Rosen, 1978; Myerson,
1981; Rochet and Choné, 1998) or the duality approach. Instead, I show that the principal’s
problem can be reduced to maximizing a linear and continuous functional over a convex
and compact space of monotone functions. Bauer’s maximum principle then implies an
extreme point solves the problem.? The proof proceeds using properties of extreme points
of spaces of monotone functions. In that sense, my paper is also related to recent papers
that characterize extreme points of spaces of monotone functions (Kleiner et al., 2021;
Yang and Zentefis, 2024; Yang and Yang, 2025).

This paper also fits into the literature on models with costly verification. A main
difference between my model and existing models with costly verification is that in existing
work, verification amounts to either the revelation of the agent’s one-dimensional type
(Townsend, 1979; Gale and Hellwig, 1985; Dunne and Loewenstein, 1995; Ben-Porath
et al., 2014; Bizzotto et al., 2020; Erlanson and Kleiner, 2020; Halac and Yared, 2020; Li,
2020; Kattwinkel and Knoepfle, 2023) or the revelation of one dimension of the agent’s
multidimensional type (Glazer and Rubinstein, 2004; Carroll and Egorov, 2019; Li, 2021).4
Therefore, the interpretation of the verification result is not influenced by the agent’s initial
disclosure as in my setting, where the substitutability between the different dimensions of
the agent’s type is key.

Nevertheless, the composite measure that verification reveals is not entirely new to
the literature. It is reminiscent of the signal-jamming problem in career concern and
lobbying models (Holmstrém, 1999; Esteban and Ray, 2006). Still, in these models the
main force is the agent’s incentives to increase training through costly effort in order to
influence the principal’s learning (though costless observation of the composite measure)
of the agent’s talent. Here, I focus on information transmission and verification. I show
that if the principal can ask for hard evidence of effort, the signal-jamming problem
is mitigated if the composite measure is talent-biased. However, when the composite
measure is training-biased, the signal-jamming problem persists even if the principal can
ask for evidence of training. In that case, the agent has incentives to withhold evidence,
which she should be paid information rents to reveal.

The paper has links to a few other strands of the literature, particularly persuasion
games (Viscusi, 1978; Grossman, 1981; Milgrom, 1981), evidence games (Shin, 1994;

3Manelli and Vincent (2007) also use Bauer’s maximum principle to study a multidimensional screening
problem.

4The verification technology in my setting nests the case where verification reveals one of the dimensions
of the agent’s type. If the composite measure is constant in training and increasing in talent (and thus
reveals talent exactly), the optimal mechanism is the same as under a talent-biased composite measure.
If the composite measure is constant in talent and increasing in training, verification is useless, and the
optimal mechanism only asks for evidence.



Dziuda, 2011; Hart et al., 2017), models with signal manipulation (Frankel and Kartik,
2019, 2022; Perez-Richet and Skreta, 2022; Jungbauer and Waldman, 2023; Ball, 2025) or
costly lying (Kartik, 2009; Sobel, 2020), and college admissions and standardized testing
(Krishna and Tarasov, 2016; Brotherhood et al., 2023; Dessein et al., 2025a,b).

2 The model

There are an agent (she) and a principal (he). The agent is privately informed of her
bidimensional type (e,t) € [0,1]?, which has a full-support density f : [0,1]> = R, ,.> No
other assumption is imposed on f; any form of stochastic dependence between e and ¢ is
allowed. e is the agent’s training. The agent has evidence equal to her training. Thus, an
agent of type (e,t) can present any level of evidence ¢’ € [0,e]. By presenting evidence ¢’
she proves that her e is at least ¢/. However, she cannot prove her e is not higher than
¢’ (i.e., that she is not withholding evidence). t is the agent’s talent, which she cannot

unilaterally prove anything about.b

Verification. By paying a cost ¢ > 0, the principal can observe the value of a composite
measure of the agent’s training and talent. o(e,t) € [0,1] is the composite measure
of the agent’s type (e,t). o : [0,1]*> — [0,1] is increasing and continuous in e and t.

I,(s) = {(et) € [0,1]* : o(e,t) = s} denotes an iso-composite-measure curve.

Payoffs. Ultimately, the principal must decide whether to accept or reject the agent.
He receives (gross of verification costs) Bernoulli payoff u(e,t) from accepting an agent of
type (e,t), where u : [0,1]*> — R is non-decreasing and continuous in e and ¢. If he rejects
the agent, he receives payoff normalized to 0. I,,(u) = {(e,t) € [0,1]? : u(e,t) = u} denotes
an indifference set of the principal, which is assumed to be a curve for any w. This is the
case if, for example, u(e,t) is increasing in e or t. The agent’s Bernoulli payoff is equal to

1 if accepted and 0 if rejected.

Parametric examples. In a linear specification, u(e,t) == y,e + (1 — v,)t — ¢, where
Yu € [0,1] measures how much the principal values e versus ¢, and ¢ € (0,1) measures the
threshold quality that the agent needs to have to be of (positive) value to the principal.
Similarly, o(e,t) == vse + (1 — 7,)t, where 75 € (0,1) measures how sensitive the composite
measure is to e versus t. In a Cobb-Douglas specification, u(e,t) = er¢!=7 — q and
o(et) == e’t!~ with v, € [0,1] and 7,,g € (0,1). No parametric assumptions are imposed

on u or o. For simplicity in depiction, all figures use the linear specification.

®The Online Appendix studies the more general case where (e,t) lies in a hypercube.

6Tt is straightforward to see that the model also captures the case where evidence measures a
combination of talent and training. Let type (e,t) be able to present any level of evidence ¢’ € [0,e(e,t)],
where £(e,t) is increasing in e and ¢. Then, we can redefine the agent’s type to be (€,t), where € := e(e,t).



The principal’s problem. To decide whether to accept the agent, the principal commits
to a direct mechanism M = (T,P) that specifies: (i) the probability T'(e,t) € [0,1] with
which the principal will verify the composite measure if the agent presents evidence e and
sends cheap talk message ¢ and (ii) the probability P(e,t,s), which must be non-decreasing
in s € [0,1], with which the principal will accept the agent after the agent has presented
evidence e and sent cheap talk message ¢, and the composite measure is s € [0,1].7 If
the composite measure is not verified, s = () and the agent is accepted with probability
P(e,t,0). Notice that (e,t) refers to the message sent by the agent. When necessary to
avoid confusion, we will denote by (¢/,t') the agent’s message to distinguish it from the
agent’s type, which in those cases will be denoted by (e,t). Overall, the principal designs
a mechanism M = (T,P), where T : [0,1]> — [0,1] and P : [0,1]* x ([0,1] U {0}) — [0,1]
with P(e,t,s) non-decreasing in s € [0,1], and (breaking the agent’s indifferences in his
favor) an agent response rule ¢ : [0,1]> — [0,1]* to maximize

probability that (e,t) is
accepted after verification

T(p(et))P(e(et), alet))
+ [1 - T(¢(€,t>)]P(¢(6,t>, 0)

probability that (e,t) is
accepted without verification
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] u(e,t) —cT(p(eyt)) }f(e,t)dtde

probability of verification of
(e,t)’s composite measure

subject to the agent’s incentive compatibility (IC) constraint

d(et) € argmax {T(e',t")P(e' ' o(et)) + (1 =T )P, 0)}.

(e',t)<(e,1)

total probability that (e,t) is accepted if she reports (e’,t)

3 Characterization of the optimal mechanism

This section first shows that it is without loss to restrict attention to truthful mechanisms
that accept the agent with certainty if she meets a composite measure threshold (section
3.1) and then characterizes this class of mechanisms (section 3.2). Next, it further simplifies
the class of candidate mechanisms by showing it is without loss to restrict attention to
(fully) deterministic mechanisms and the optimal mechanism does not overspend on
verification (section 3.3). Last, it derives the optimal mechanism under free (section 3.4)

or costly verification (section 3.5).

"The condition that P(e,t,s) be non-decreasing in s € [0,1] can be understood as an incentive-
compatibility condition in a model where o(e,t) is the (maximum) composite measure that agent type
(e,t) can achieve, and the agent can intentionally manipulate her composite measure downwards. The
condition can also be interpreted as a “fairness” constraint on the mechanism.



3.1 Simplifying the class of mechanisms

Before characterizing IC mechanisms, we show that we can without loss restrict the class

of mechanisms we need to consider.

3.1.1 Truthful mechanisms are without loss

The first simplification is that the principal can without loss of optimality restrict attention

to truthful mechanisms (i.e., mechanisms that induce truth-telling).

Definition 1. A mechanism M = (T,P) is truthful if for every (e,t) € [0,1]?

(e,t) € argmax {T(¢',t")P(e,t',o(et)) + (1 —T(e,t"))P(et',0)}.
(e/t)<(e,1)

To see why, notice that the correspondence (e,t) — {(¢/,t’') € [0,1]* : ¢’ < e}, which
maps each agent type (e,t) to the messages she can send, satisfies the Nested Range
Condition of Green and Laffont (1986), who show that under this condition, the set of
implementable social choice functions coincides with the set of truthfully implementable

social choice functions.®

3.1.2 Mechanisms that accept the agent with certainty if she meets a com-

posite measure threshold are without loss

Next, we can constrain attention to mechanisms with threshold acceptance policies after

verification; that is, mechanisms such that

0 if s < b
Plet.s) - focoted )
Pu(et) if s> o(eyt)

for any (e,t) and some P, : [0,1]> — [0,1], where at is a mnemonic for the probability of
acceptance after verification (provided that the threshold composite measure o(e,t) is
met). If type (e,t) reports her type truthfully, then if the composite measure is verified,
she is accepted with probability P, (e,t). Notice that the threshold is set exactly equal to
the composite measure of a truthfully-reporting agent. To see why constraining attention
to such mechanisms is without loss of optimality, observe that among all mechanisms
that conditional on verification accept type (e,t) with probability P,(e,t), the one that

satisfies equation (1) minimizes incentives of other types to imitate (e,t).?

$Essentially, the principal implements a social choice function g : [0,1]> — [0,1]? x [0,1]%Y where
g1(e,t) the probability of verification, ga(e,t) the probability of acceptance conditional on no verification,
and gs(e,t,’) a self-map on [0,1] that (conditional on verification) maps the composite measure s to the
probability gs(e,t,s) of acceptance.

9Namely, accepting the agent with even higher probability for performing above o(e,t) will result in
the same probability of accepting type (e,t) in case of verification and only provide additional incentives

10



We can further restrict attention to mechanisms that accept the agent with certainty if
she meets the composite measure threshold (i.e., P, (e,t) = 1 for every (e,t)). To see why,
denote the total probability with which agent (e,t) is accepted if she truthfully reports
her type by I(e,t) == (1 — T(e,t))P(e,t,0) + T(e,t)Py(e,t) and define outcome-equivalent

mechanisms as follows.

Definition 2. A truthful mechanism M’ = (7", P’) with threshold acceptance policy is
outcome-equivalent to another truthful mechanism M = (T, P) with threshold acceptance
policy if for every (e t), II(e,t) = IT'(e,t), where I(e,t) = (1—T'(e,t)) P(e,t,0)+T(e,t) Py (e,t)
and I'(e,t) = (1 — T'(e,t)) P'(e,t,0) + T"(e,t) Pl (e t).

Lemma 1 shows that when verification is costly, any optimal mechanism accepts the
agent with probability 1 if she passes the threshold. When verification is free, it is still

without loss to constrain attention to such mechanisms.

Lemma 1. Given any truthful mechanism M with threshold acceptance policy, there exists
a truthful mechanism M’ = (T",P’) with threshold acceptance policy and P.,(e,t) =1 for
every (e,t) that is outcome-equivalent to M. Also, for ¢ > 0, in any optimal mechanism
M = (T,P), Py(e,t) =1 for any (e,t) such that T'(e,t) > 0.1

Here is the intuition behind this result. The only reason to accept an agent after
verification—rather than accept her without verification—is to prevent others from imi-
tating her. The total probability with which each agent is accepted is the sum of (i) the
probability (1 — T'(e,t))P(e,t,0) of acceptance without verification and (ii) the probabil-
ity T'(e,t)P.(e,t) of acceptance after verification (provided that the composite measure
threshold is met). But then, if the principal pays for verification, he may as well set
P, (et) =1 to assign as large a part as possible of the total probability of acceptance to

the case of acceptance after verification.

3.2 Incentive-compatible mechanisms

Given what we have seen, we constrain attention to truthful mechanisms that accept the

agent with certainty if she meets the composite measure threshold.
Definition 3. A mechanism M = (T,P) is simply incentive-compatible (SIC) if it is
truthful and

0 if s <o(et)

P(et,s) =
1 if s> o(ept)

for other agents to imitate (e,t). Similarly, there is no reason to accept the agent for composite measures
lower than o(e,t). Particularly, this argument holds when we compare all mechanisms with the same
verification policy T" and thus equal verification costs.

0Strictly put, Pu(e,t) can be lower than 1 for a zero-measure set of (e,t) with T(e,t) > 0. For (e,t)
with T'(e,t) = 0, the value of P,:(e,t) does not matter, so we can again set P, (e,t) = 1 without loss.

11



for every (e,t) € [0,1]2.

Proposition 1 characterizes these mechanisms. Let 7(e,s) be implicitly given by
o(e,m(e,8)) = s. 7(e,s) gives the level of talent that an agent with training e should
have to achieve composite measure (exactly) s. 7(e,s) is well-defined for (e,s) such
that s € [0,1] and e € [e(s),e(s)], where e(s) := min{e € [0,1] : o(e,1) > s} and
e(s) == max{e € [0,1] : o(e,0) < s}. 1!

Proposition 1. A mechanism M = (T, P) is SIC if and only if
(i) II(e,t) is non-decreasing in ¢ for every e € [0,1],
(ii) II(e, 7(e,s)) is non-decreasing in e over e € [e(s),e(s)] for every s € [0,1], and
(iii) (1 —T(e,t))P(e,t,0) < T(e,0) for every (e,t) € [0,1]?,

where II(e,t) = (1 — T'(e,t))P(e,t,0) + T(e,t) is the probability with which agent (e,t) is
accepted if she truthfully reports her type.

Figure 1(a) shows the different ways an agent can misreport her type: (1) present
all evidence of training but understate talent, (2) present all evidence but overstate
talent, betting on the prospect of acceptance without verification, (3) withhold evidence
to overstate talent, imitating an agent with the same composite measure, (4) withhold
evidence, imitating an agent with lower composite measure, and (5) withhold evidence,
imitating an agent with higher composite measure, betting on the prospect of acceptance
without verification. Figure 1(b) schematically summarizes conditions (i) and (ii) of
Proposition 1.

Here is why the conditions of Proposition 1 are necessary and sufficient to preclude
all five kinds of deviations. First, condition (i) is necessary and sufficient to rule out
deviation (1). Agent (e,t) does not want to present all her evidence but understate her
talent to imitate agent (e,t’) with ¢’ < t, meet the composite measure threshold, and get
accepted with probability I(e,t’). Second, condition (iii) is necessary and sufficient to rule
out deviation (2) by an untalented agent (e,0). Agent (e,0) does not want to overstate her
talent, imitating an agent (e,t) and possibly getting accepted without verification. Put
differently, among agents with the same level of training e, in order to accept talented
agents more frequently than the untalented agent (e,0), the principal needs to verify the
talented agents’ composite measure with high enough probability to prevent agent (e,0)
from imitating them. Moreover, conditions (i) and (iii) combined rule out deviation (2)
by any agent (e,t). Combined, they imply that II(e,t) > TI(e,0) > (1 — T'(e,t')) P(e,t’,0)

He(s) (resp. €(s)) is the minimum (resp. maximum) level of training that an agent can have while
achieving composite measure (exactly) s. That is, the composite measure of agents with training lower
than e(s) is lower than s even if their talent is ¢ = 1. Analogously, the composite measure of agents with
training higher than e(s) is higher than s even if their talent is ¢t = 0.
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Figure 1: Possible misreports and incentive compatibility

(a) Five possible ways agent (e,t) can misreport her (b) Directions in which II(e,t) is non-decreasing in
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for every e,tt’, so no agent (e,t) wants to present all her evidence but overstate her
talent to be ¢’ > t and get accepted with probability (1 — T'(e,t'))P(e,t’,})) instead of
II(e,t). Third, condition (ii) is necessary and sufficient to rule out deviation (3). Agent
(e,t) does not want to imitate an agent (€¢/,t') with less training ¢/ < e, more talent
t" > t, and equal composite measure o(€',t') = o(e,t) to get accepted with probability
[I(¢,t') instead of Il(e,t). Fourth, conditions (i) and (ii) combined rule out deviation (4).
Fifth, conditions (i), (ii), and (iii) combined rule out deviation (5), since they imply that
I(e,t) > T(e,0) > T(e,0) > (1 = T(e',t"))P(',t',0) for every e,e’ t,;t' with ¢’ < e, where

the second inequality follows from conditions (i) and (ii) combined.

3.3 Further simplifying the class of mechanisms

Before deriving the optimal mechanism, we show that it is deterministic and does not

overspend on verification.

3.3.1 The optimal mechanism does not overspend on verification

Lemma 2 shows that when verification is costly and some talented agents are optimally
accepted with higher probability than untalented ones with the same level of training,
the optimal mechanism satisfies condition (iii) of Proposition 1 with equality. Under free
verification or when it is not optimal to accept talented agents with higher probability, it
is still without loss to constrain attention to mechanisms that satisfy condition (iii) of

Proposition 1 with equality.

Lemma 2. Given any SIC mechanism M = (T,P), there exists an SIC mechanism
M' = (T",P") with (1-T"(e,t))P'(e,t,0) = IT'(e,0) for every (e,t) that is outcome-equivalent
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to M and has at most as high verification costs as M. For ¢ > 0, if also II(e,t) > II(e,0)

for a positive measure of agent types, then M’ has lower verification costs than M.

Here is the intuition behind this result. Take any SIC mechanism M = (T,P). When
II(e,0) > (1 — T(e,t))P(e,t,D) for some t > 0 and e, agent (e,0) strictly prefers to not
overstate her talent to be t. This strict preference is due to over-verification of the talented
agent (e,t)’s composite measure. We can decrease T'(e,t) and increase P(e,t,)) keeping
H(et) = (1-T(et))P(et,0)+T(e,t) fixed while maintaining (1—T'(e,t))P(e,t,0) < I(e,0),
so that condition (iii) of Proposition 1 is still satisfied.'? Conditions (i) and (ii) of
Proposition 1 are also still satisfied since II has not changed. (e,t)’s composite measure is
verified with lower but still high enough probability to prevent (e,0) from imitating (e,t).

From now on, we constrain attentions to mechanisms with (1—T'(e,t))P(e,t,0) = I1(e,0),
or equivalently, II(e,t) = I1(e,0) + T'(e,t), for every (e,t). In an SIC mechanism without
excessive verification, the total probability of acceptance has two components: (i) a base
probability I1(e,0) of accepting the agent for her evidence without verification and (ii)
an additional probability T'(e,t) of accepting the agent for her talent, which through
verification allows her to differentiate herself from less talented agents with the same level

of training.

3.3.2 The optimal mechanism is deterministic

The principal’s objective function is [y [y [(e,t)u(e,t) — cT'(e,t)] f(e,t)dtde. Given Lemma
2, any II that satisfies conditions (i) and (ii) of Proposition 1 can be optimally implemented
with 7" and P that satisfy condition (iii) with equality. Thus, we can substitute T'(e,t) =
II(e,t) — I(e,0) to write the objective function only in terms of II:

/01 /e(es(:) [II(e,7(e,s))(ule,r(e,s)) — c) + cll(e,0)] f(e,r(e,s))deds, (2)

where instead of integrating over e and ¢, we integrate over e and s. The principal’s
problem amounts to choosing Il(e, 7(e,s)) non-decreasing in s (condition (i) of Proposition
1) and e (condition (ii) of Proposition 1) to maximize (2), which is linear (and thus convex)
in II. By Bauer’s maximum principle, there exists an extreme I[I-—among all II that are
non-decreasing in s and e—that solves the principal’s problem. Any extreme II maps each
(e,s) to either 0 or 1.

Lemma 3. There exists an optimal mechanism that is deterministic (i.e., with I(e,t) €
{0,1} for all (et)).

12Notice that because M is SIC, condition (i) of Proposition 1 implies that II(e,t) = (1—T(e,t))P(e,t,0)+
T(e,t) > II(e,0), which combined with II(e,0) > (1 — T'(e,t))P(e,t,0) implies that T'(e,t) > 0 to start with,
so we can decrease T'(e,t). Also, if P(e,t,0)) = 1 to start with, then we keep P(e,t,0) fixed as we decrease
T(e,t). Notice also that by decreasing T'(e,t) and increasing (or keeping fixed, if equal to 1) P(e,t,0)
while keeping II(e,t) fixed, we increase (1 — T'(e,t))P(e,t,d). This is feasible to do while maintaining
(1 —=T(e,t))P(e,t,0) <II(e,0) because II(e,0) > (1 — T(e,t))P(e,t,B) to start with.
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3.4 Optimal screening under free verification

We are now ready to characterize the optimal mechanism under free verification.

3.4.1 Talent-biased composite measure

Consider first the case where the composite measure is talent-biased in the sense that it
is more sensitive to talent than talent is valuable to the principal-—and conversely, less
sensitive to training than training is valuable to the principal. In the linear and Cobb-
Douglas specifications (see section 2), o is talent-biased when 7, < 7,. A talent-biased o

can be defined more generally as follows.'?

Definition 4. o is talent-biased if for every composite measure s € [0,1] there exists e
such that for every (e,t), if e > e; (resp. e < e;) and o(e,t) = s, then u(e,t) > ¢ (resp.
u(e,t) < c).

This is a single-crossing condition. It says that iso-composite-measure curves cross the
principal’s indifference curve I, (c) “from below” (see Figure 3(a)). Here is the intuition
behind the definition. Because the composite measure is talent-biased, it is too generous
towards those with high talent and low training and too strict towards those with low
talent and high training. Therefore, among all agents with the same composite measure,
the principal’s payoff from accepting the agent is higher (resp. lower) than the verification
cost for agents with high (resp. low) training.

Clearly, if the principal’s payoff from accepting the agent is increasing along iso-
composite-measure curves, o is talent-biased. This is the case if the principal’s marginal
rate of substitution of talent for training (MRS) is higher (in absolute value) than the

composite measure’s MRS.

Claim 1. If u(e,7(e,s)) is increasing in e over e € [e(s),e(s)] for every s € [0,1], then o is

talent-biased. The condition is satisfied if gﬁ((i?)%i > gi((i%gi

for every (e,t).

If the principal only values training, ¢ is automatically talent-biased. Then, he can
trivially achieve the first-best without the need for verification—much like in the case
where talent was absent from the model. Namely, he can accept every agent with sufficient
training to be of positive value. Allowing for the principal to also value talent, Proposition
2 shows that when verification is (i) free and (ii) the composite measure is talent-biased,

the principal can still achieve the full information benchmark.

13We define a talent-biased composite measure for any verification cost c¢. The optimal mechanism
under costly verification is studied in section 3.5.
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Proposition 2. Let ¢ = 0, and assume that o is talent-biased. Then, II(e,t) =
I (u(e,t) > 0) is incentive-compatible, so the principal achieves the full information first-

best.!4

Proposition 2 shows that the principal can achieve the first-best, safely disregarding
the possibility that the agent will withhold evidence to manipulate the interpretation of
the composite measure. The agent’s incentive-compatibility constraints are not binding.

Figure 3(a) presents the optimal mechanism.

3.4.2 Training-biased composite measure

Consider now the case where the composite measure is training-biased. In the linear
and Cobb-Douglas specifications (see section 2), ¢ is training-biased when 7, > 7,. A

training-biased o can be defined more generally as follows.

Definition 5. ¢ is training-biased if for every composite measure s € [0,1] there exists
es such that for every (e,t), if e < es (resp. e > e5) and o(e,t) = s, then u(e,t) > ¢ (resp.
u(e,t) < c).

This is again a single-crossing condition. It says that iso-composite-measure curves
cross the principal’s indifference curve 7,(c) “from above” (see Figure 3(b)). Claim 2 is

analogous to Claim 1.

Claim 2. If u(e,7(e,s)) is decreasing in e over e € [e(s),e(s)] for every s € [0,1], then o is

training-biased. The condition is satisfied if gzgzgﬁg(; < g‘;(é?)ég: for every (e,t).

The first-best is no longer achievable. Indeed, Figure 2 shows that accepting (almost)
every agent with u(e,t) > 0 and rejecting (almost) every agent with u(e,t) < 0 is not
incentive-compatible, as it creates incentives for agents with u(e,t) < 0 to withhold
evidence to imitate more talented agents.

But what can actually be achieved when the composite measure is training-biased?
Proposition 3 describes the optimal mechanism when verification is free and the composite
measure is training-biased. In the optimal mechanism, agent (e,t) is accepted if and only
if o(et) > s*.

Proposition 3. Let ¢ = 0, and assume that ¢ is training-biased. Then, there exists an
optimal mechanism with TI(e,t) = I(o(e,t) > s*).15

MTemma 2 restricts attention to the following way of implementing the first-best II: setting T'(e,t) =
I(u(et) > 0 A u(e,0) < 0) and P(e,t,0) = I(u(e,0) > 0). Clearly, since verification is free, T'(et) =
I(u(e,t) > 0) and P(e,t,0) = 0 is, for example, also optimal, as is always verifying the composite measure
and accepting only the valuable agents.

5Lemma 2 restricts attention to the following way of implementing this IT: setting T'(e,t) = I(o(e,t) >
s*Ne <e(s*)) and P(e,t,0) = I(e > e(s*)). Clearly, since verification is free, T'(e,t) = I(o(e,t) > s*) and
P(e,t,0) = 0 is, for example, also optimal, as is always verifying the composite measure and accepting
only the agents who pass the threshold s*.
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Figure 2: Not achieving the first-best: training-biased composite measure

(a) Only talent valuable to the principal (b) Training-biased composite measure

"N "N

0 . 10

Note: the arrowed lines represent the directions in which II(e,t) is non-decreasing in any SIC
mechanism. The dashed lines represent the principal’s indifference curve I,,(0).

Finding the optimal mechanism is remarkably simple. It amounts to maximizing
a continuous function of one variable over a closed interval. The principal needs to

find s* € argmax;  co1 fslmm ff((;) u(e,s)f(e,s)deds, where u(e,s) = u(e,7(e,s)) and

fle,s) = f(e,7(e,s)).'® The principal effectively chooses a threshold s* and accepts every
agent with composite measure at least as high. In choosing this threshold, he balances
the Type I (i.e., rejecting agents who lie above I,,(0)) and Type II (i.e., accepting agents
who lie below 1,,(0)) errors. This trade-off can be seen in Figure 3(b).

Here is a sketch of the proof of Proposition 3. Because ¢ is training-biased, for any
two types of zero value to the principal (e,t),(e/,t') € 1,(0) with ¢’ > e, o(e',t') > o(e,t).
But then, if o(e’,t') > o(e,t) and €’ > e, incentive-compatibility requires I1(e’,t") > Il(e,t).
In other words, Il(e,t) has to be non-decreasing as e increases along the I,(0) curve.
Therefore, in any deterministic SIC mechanism, there exists a threshold type on the
I,,(0) curve such that agents on the 1,(0) curve with more (resp. less) training than the
threshold type are accepted (resp. rejected). Next, notice that incentive-compatibility
requires that II(e,t) be non-decreasing along iso-composite-measure curves (condition
(ii) of Proposition 1). Thus, having fixed Il(e,t) along the [,(0) curve, keeping II(e,t)
constant along iso-composite-measure curves maximizes the principal’s payoff. That is,
because on the part of an iso-composite-measure curve that lies below (resp. above) I,(0),
the principal wants to make II(e,t) as low (resp. high) as possible but is constrained by
condition (ii) of Proposition 1 to set Il(e,t) at least (resp. most) equal to its value on the

curve [,(0) for that specific composite measure level. Condition (i) of Proposition 1 is

6The principal’s problem reduces to this because all mechanisms with TI(e,t) = I(o(e,t) > s*) and
appropriate T are SIC.
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automatically satisfied.

3.5 Optimal screening under costly verification

We now turn to characterizing the optimal mechanism under costly verification.

3.5.1 Talent-biased composite measure

Proposition 4 characterizes the optimal mechanism under a talent-biased composite

measure, generalizing Proposition 2 by allowing for costly verification (i.e., ¢ > 0).

Proposition 4. If ¢ is talent-biased, then there exists an optimal mechanism with
I(e,t) = L(u(et) > core>e*), T(et) =L(u(et) > cand e < e*), and P(e,t,0) = I(e >

e*) for some e* € [0,1].

Every agent with training e > e* is accepted without verification, while agents with
training e < e* are accepted after verification if their value u(e,t) to the principal is higher
than the cost ¢ of verification. The remaining agents are rejected without verification.
Figure 3(c) presents the optimal mechanism.

An increase in the threshold e* would lead to: (i) increased verification costs by having
additional agents who lie above I,,(c) get accepted after verification (who were accepted
without verification before the increase in e*), (ii) a decrease in the Type II error, but also
(iii) an increase in the Type I error. Channels (i) and (iii) negatively affect the principal’s
payoff, while channel (ii) tends to increase his payoff. In choosing the optimal threshold e*,
the principal trades off verification costs with accuracy in acceptance/rejection decisions
(i.e., the net effect of (ii) and (iii)).

3.5.2 Training-biased composite measure

Proposition 5 characterizes the optimal mechanism under a training-biased composite

measure, generalizing Proposition 3 by allowing for costly verification (i.e., ¢ > 0).

Proposition 5. If ¢ is training-biased, then there exists an optimal mechanism with
(et) = I(o(et) > s*ore > e*), T(et) = I(o(et) > s* and e < €*), and P(e,t,0) =
I(e > ¢*) for some (e*,s*) € [0,1]°.

Every agent with training e > e* is accepted without verification, while agents with
training e < e* are accepted after verification if their composite measure is at least s*.
The remaining agents are rejected without verification. Figure 3(d) presents the optimal
mechanism.

The principal makes four types of errors: (i) He rejects without verification some
agents whom he would prefer to accept after verification (Type I error A), (ii) he rejects

without verification some agents whom he would prefer to accept without verification
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Figure 3: The optimal mechanism

(a) Talent-biased o & ¢ =0

accepted after verification

(c) Talent-biased o & ¢ >0

accepted after
verification

I (s)

0 e* 61

(b) Training-biased o & ¢ =0

accepted after verification

(s)

0 é(s*) 1
(d) Training-biased o & ¢ >0

accepted after
verification

(s")

0 e* 1

e

Note: the dashed line I,(c) represents the principal’s indifference curve at utility level c:
the principal is indifferent between (i) accepting after verification and (ii) rejecting without
verification agents on that curve. The dashed line I,,(0) represents the principal’s indifference
curve at utility level 0. The arrowed line represents an iso-composite-measure curve, at an
arbitrary level s in panels (a) and (c), and at the optimal level s* in panel (b) and (d). The
green area denotes the set of agents who are accepted without verification. The yellow area
denotes the set of agents who are accepted after verification. The red area denotes the set of
agents who are rejected without verification. Although s* is used in both panels (b) and (d), s
in panel (b) can be different from s* in panel (d). In panel (d), ,,(0) can intersect the vertical
line at e* above or below the point where I,(s*) intersects the vertical line at e*.
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(Type I error B), (iii) he accepts after verification some agents whom he would prefer to
reject without verification (Type IT error A), and (iv) he accepts without verification some
agents whom he would prefer to reject without verification (Type II error B).

In choosing s*, he considers the trade-off between Type I error A and Type II error A.17
An increase in the threshold e* would lead to: (i) increased verification costs by having
additional agents who lie above I,(s*) get accepted after verification (who were accepted
without verification before the increase in e*), (ii) the rejection without verification of
additional agents who lie below I,(0) (who were accepted without verification before
the increase in e*), but also possibly (iii) the rejection without verification of additional
agents who lie below I,(s*) but above [,(0) (who were accepted without verification
before the increase in €*).'® Channels (i) and (iii) negatively affect the principal’s payoff,
while channel (ii) tends to increase his payoff. In choosing the optimal threshold e*, the
principal trades off verification costs with accuracy in acceptance/rejection decisions (i.e.,
the net effect of (ii) and (iii)).

4 Discussion

This section discusses (i) the effects of the verification cost and bias of the composite
measure on the principal’s decision errors, (ii) comparative statics, (iii) the implementation
of the optimal mechanism, and (iv) implications of the results for the difficulty of hiring

for different types of positions.

4.1 Effects of the verification cost and bias of the composite

measure on principal’s decision errors

The verification cost and the bias of the composite measure in favor of training induce
the principal to make errors favoring high- over low-training agents. Indeed, a comparison
of Figures 3(a) and 3(c) shows that the verification cost alone gives rise to such errors.
A comparison Figures 3(a) and 3(b) shows that the bias of the composite measure in
favor of training also gives rise to such errors even when verification is free. But how do
the verification cost an the bias of the composite measure interact interact in inducing
errors favoring high- over low-training agents? Proposition 6 shows that the two forces
are complements: The bias of the composite measure in favor of training exacerbates the
errors due to the verification cost by decreasing the threshold level of evidence required

for acceptance without verification, as can be seen through a comparison of Figures 3(c)
and 3(d).

17As s* increases, part of Type II error A turns into Type I error B, which benefits the principal, who
prefers to reject without verification (rather than accept after verification) agents who lie below I, (c).
18Channel (iii) is not necessarily present, as can be seen in Figure 3(d).
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Proposition 6. Take any pair of talent- and training-biased composite measures. For
any optimal evidence threshold e}, .4 under the talent-biased measure and any optimal
evidence and composite measure thresholds (€} 1. 4,55 _1iaseq) Under the training-biased

measure, (i) the evidence threshold is weakly higher under the talent-biased measure:
9

*

¥ biaseds OF (i1) both evidence thresholds are optimal under both measures.!

*
€t _biased Z €

To see why, we can examine Figures 3(c),(d). Both under a talent- and a training-
biased composite measure, an increase in the evidence threshold e* causes (i) agents
who lie below I,(s*) to move from the green area (i.e., from getting accepted without
verification) to the red area (i.e., to getting rejected without verification) and (ii) agents
who lie above I,,(¢) to move from the green to the yellow area (i.e., to getting accepted
after verification). The difference lies in the effect of an increase in e* on agents who lie
above I,(s*) and below I,(c). Under a talent-biased composite measure, an increase in
e* causes those agents to move from the green area to the red area. On the other hand,
under a training-biased composite measure, it causes them to move from the green area to
the yellow area. Because those agents who lie above I,(s*) and below I,,(c) deliver payoff
less than ¢ when accepted, it is better that they be moved to the red area rather than to
the yellow area. Therefore, an increase in e* is more attractive to the principal under a
talent-biased than under a training-biased composite measure.

Simply put, because verification does not distort the incentives of agents to present
evidence under a talent-biased composite measure but it does distort incentives under a
training-biased composite measure, verification is more effective under a talent-biased than
under a training-biased composite measure.?’ Thus, fewer agents are optimally accepted

without verification under a talent-biased than under a training-biased composite measure.

4.2 Comparative statics

Now I briefly comparative statics, which are covered in more detail in the Appendix.

4.2.1 Talent-biased composite measure

The following comparative statics hold for the case of a talent-biased composite measure.
First, an increase in ¢ causes the (combined) magnitude of channels (i) and (iii) discussed
in section 3.5.1 to increase without affecting the magnitude of channel (ii). Thus, e* is

non-increasing in ¢: The more costly verification is, the more high-training agents are

191f € _biasea € (0,1) and the principal’s objective function under the talent-biased composite measure
is single-peaked in the evidence threshold, then e} 1, ..q4 > €5 _1iaced-

20Absent a strong negative dependence between training and talent, evidence of training is indeed
good news about the payoff from accepting the agent. Even with a strong negative dependence, absent
verification, any incentive-compatible evaluation scheme that utilizes evidence should reward the candidate
for presenting it. Therefore, absent verification, presenting evidence is always weakly in the agent’s best

interest.
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accepted without verification. Second, the principal’s optimal payoff is non-increasing in c.
Third, since the principal’s objective function is independent of o, the optimal mechanism

and payoff are the same under any two talent-biased composite measures.

4.2.2 Training-biased composite measure

The following comparative statics hold for the case of a training-biased composite measure.
First, an increase in ¢ tends to directly cause (i) e* to decrease by enhancing the verification
cost savings associated with a decrease in e* and (ii) s* to increase by enhancing the
verification cost savings associated with an increase in s*.2! However, an increase in s*
tends to cause e* to increase by (i) reducing the marginal increase in verification costs
associated with an increase in e* and (ii) increasing the marginal net decrease in the Type
IT errors A and B associated with an increase in e*. Conversely, a decrease in e* tends
to cause s* to decrease by decreasing the marginal (with respect to s*) Type II error A.
Therefore, although an increase in ¢ tends to directly cause e* to fall and s* to rise, the
interaction between e* and s* works in the opposite direction rendering the net effect
ambiguous.

Second, the principal’s optimal payoff is non-increasing in c¢. Third, the optimal payoff
is higher under less training-biased composite measures. Take any two training-biased
composite measures o’ and o. If all iso-composite-measure curves of o cross the iso-
composite-measure curves of ¢’ from above (i.e., o is more training-biased than ¢’), the
principal’s optimal payoff is higher under ¢’ than under .22 Fourth, the principal’s
payoff will tend to increase as training and talent become more positively stochastically
dependent. A strong positive stochastic dependence between e and ¢ means that there are
not many agents with high (resp. low) talent and low (resp. high) training, which implies
that both Type I and Type II errors are small. As e and ¢ become perfectly positively
correlated, the principal achieves the first-best just by asking for evidence—regardless of

his preferences and sensitivity of the composite measure to e or t.

4.3 Implementation of the optimal mechanism

We have so far without loss restricted attention to truthful mechanisms. However, under
a training-biased composite measure, the principal can implement the optimal mechanism
simply by offering the agent two paths to getting accepted: (i) provide evidence e* and

you will be accepted without verification or (ii) without providing any evidence, ask the

21put differently, an increase in ¢ can be seen to increase the marginal (with respect to s*) Type II
error A and decrease the marginal Type I error A, thereby tending to make s* increase to equalize the
magnitudes of the two errors.

22Comparative statics of s* with respect to o would have little value, since optimal composite measure
thresholds under different composite measures are not comparable.
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principal to verify your composite measure, and if it is at least s*, you will be accepted.
The first option is not always provided (e.g., when verification is free).

A similarly simple implementation of the optimal mechanism under a talent-biased
composite measure is not possible. In that case, the principal needs to ask for evidence also
from agents whose composite measure he verifies. As can be seen in Figures 3(a),(c), there
exist eg,ep,to,tm,ty such that e, < ep, tp <t < tn, ulen,tm) > ¢ > max{u(en,ts), uleptn)},
and o(ep,t,,) = o(egty). The principal needs to verify (ep,t,,)’s composite measure to
accept her but not (ep,t;). He also needs to ask (ey,t,,) for evidence of training to accept
her but not (eg,ty).

4.4 Hiring for different types of positions

Comparing the optimal mechanism under a talent-biased composite measure with the
optimal mechanism under a training-biased composite measure reveals a stark contrast
in the difficulty of hiring different types of employees. When training (e.g., skills and
knowledge) provable through hard evidence are most valuable, the hiring process is easy.
On the other hand, when talent is most valuable, the hiring process is harder: Hiring
errors arise unless the composite measure (e.g., interview or test performance) is very
sensitive to talent. If it is not, the hiring process is flawed, favoring unworthy candidates

with advanced training over worthy candidates with limited training.

5 Applications

This section examines the implications of the results for hiring for prestigious positions,

promotions, college admissions, and academic job market hiring.

5.1 Hiring for prestigious positions

A job candidate’s training e is her resume quality. ¢ is her ability and drive not captured
by e. An employer wants to decide whether to hire the candidate for a prestigious position.
Verification works as follows: The employer has the option to let another employer hire
the candidate in some less prestigious position, observe her performance in that position
(i.e., the composite measure), and decide whether to poach her. Poaching is costly because
it is more expensive to poach the candidate than hire her from the beginning.

In the optimal mechanism, candidates with strong credentials—including unworthy
ones—are immediately hired for prestigious positions. On the other hand, talented
candidates with weak credentials have to first work in less prestigious positions to prove
their worth before landing a prestigious position. Also, if the candidates’ performance is
more sensitive to talent in the more prestigious position than in the less prestigious one,

worthy candidates with low credentials are at a disadvantage also in the poaching stage.
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5.2 Promotions

An employee’s e is her hardworkingness. t is her efficiency, talent, and managerial skills.
o(e,t) is her productivity in her current position. The employee can provide or withhold
evidence on e by, for example, choosing how many hours to work in the office and
how many to work from home. The employer can verify the employee’s productivity
o(e,t). If the employee continues to work in her current position, the employer’s payoff
is o(e,t). If she is promoted, the employer’s payoff is v(e,t). The employer’s problem is
equivalent to the one in section 2 with u(e,t) = v(e,t) — o(e,t), as long as the difference
v(e,t) — o(e,t) is non-decreasing in e and .23 This condition has a natural interpretation:
The higher position comes with increased responsibilities that allow the employee’s talent
and hardworkingness to have a larger impact. The composite measure is training-biased

if for every (e,t),

Ov(e,t)/0e - do(e,t)/0e
dv(et) /ot ~ do(ept)/ot

This condition also has a natural interpretation: For the employee’s productivity in the
higher position, the relative importance of talent (relative to hardworkingness) is higher
than in the current position. The composite measure is talent-biased if the inequality is

reversed.

5.3 College admissions and standardized testing

A college applicant’s e is her prior training, preparation, parents’ education and professions,
and parental support. ¢ is her talent and drive not captured by e. The college wants
to decide whether to admit the applicant or not. Verification amounts to requiring the
applicant to submit her standardized test score.?*

In the optimal mechanism, if the standardized test is training-biased, admission
decisions are flawed at the expense of students with low training, preparation, and parental
support to the extent that applicants can withhold evidence of those. Particularly, if
colleges only value talent and, thus, try to control for the applicants’ unequal backgrounds,

the above problem is necessarily present.

Zu(e,t) could also be defined as u(e,t) == v(e,t) — o(e,t) — q, where q is the threshold productivity
differential for the promotion to be beneficial to the firm. For example, ¢ could be (i) the productivity
differential of another employee who could be promoted instead, (i) the salary raise associated with the
promotion, or (iii) the surplus from hiring someone from outside the firm.

24In this setting, ¢ = 0 and the college does not condition the requirement to submit a test score on
the candidate’s report. However, the optimal mechanism takes the same form as in the setting we have
studied for ¢ = 0, where there is no need for the principal to accept some agents who present evidence
without verification.
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5.4 Academic job market talks

An academic job market candidate’s research topic is comprised of a “mass” b > 1 of
(uncountably infinitely many) problems.?® e € [0,1] is the candidate’s knowledge, the mass
of problems she has solved. t is her ability to think on her feet. More concretely, it is
the probability with which she finds an answer on the spot to a problem that she has not
already solved. After the candidate presents answers to a mass €’ € [0,e] of problems and
sends a cheap talk message about t, the hiring committee may verify the proportion of
questions she can answer. Verification amounts to posing to the candidate infinitely many
problems randomly sampled from the mass of problems that the candidate has not initially
disclosed answers t0.2% Thus, if she presents answers to mass €’ € [0,e] of problems, she
will answer proportion p(e,t,e’) :=[e — € + (b —e)t]/(b — €') of the problems posed to her.
This is the sum of (i) the proportion (e —€’)/(b — €’) of problems sampled from the set
of problems the candidate already has answers to (but has not presented) and (ii) the
proportion (b —e)/(b — €’) of problems sampled from the set of problems the candidate
does not already have answers to multiplied by the proportion ¢ to which the candidate
will find answers on the spot. u(e,t) is the hiring committee’s surplus from hiring the
candidate. Observing ¢’ and p(e,t,e’) is equivalent to observing ¢’ and o(e,t) == e+ (b—e)t,

so the committee’s problem is equivalent to the problem we have studied.

6 Extensions and robustness

This section discusses optimal screening under alternative evidence structures (section
6.1), costly composite measure design (section 6.2), endogenous training (section 6.3), and
the constraint that P(e,t,s) be non-decreasing in s (section 6.4). The Online Appendix
generalizes the characterization of the optimal mechanism to the case of m dimensions of

training and n dimensions of talent.

6.1 Optimal screening under alternative evidence structures

I study optimal screening under three alternative scenarios: (i) The agent cannot withhold
evidence, (ii) the agent can also present evidence of talent, or (iii) the agent cannot present

evidence (on either dimension of her type).

25The analysis can apply to presentations more generally (e.g., by a start-up founder to a venture
capital firm).

26These can be countably infinitely many problems or a mass of (uncountably many) problems smaller
than b — 1. The agent is equally likely to find an answer to any of the problems, so there is no need to
identify problems with an index.
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6.1.1 Optimal screening when the agent cannot withhold evidence

Assume that training is observed by the principal.?” Now, verification reveals t. The
principal’s problem is decoupled: He can solve it for each e separately. It is easy to see
that for each e, the principal needs to choose between two options: (i) accept without
verification every agent with training e or (ii) accept an agent with training e after
verification if u(e,t) > ¢ and reject an agent with training e without verification if
u(e,t) < c. Denote by E; [min{u(e,t), c}|e] the expectation of min{u(e,t),c} conditional
on e. When E; [min{u(e,t), c}|e] > 0, option (i) delivers a higher payoff to the principal,
while when E; [min{u(e,t), c}| e] < 0, option (ii) is superior. Clearly, when ¢ = 0, option

(ii) is superior. Proposition 7 describes the optimal mechanism.
Proposition 7. In the optimal mechanism, for each level of training e € [0,1],

(i) if E; [min{u(e,t),c}|e] > 0, then every agent with training e is accepted without

verification, and

(i) if E; [min{u(e,t),c}| e] < 0, then an agent with training e is (a) accepted after

verification if u(e,t) > ¢ and (b) rejected without verification if u(e,t) < c.

The optimal mechanism does not depend on . Part (ii) of Proposition 7 implies that
under a training-biased composite measure, if two agents (eq,t1) and (e,ts), ea > €1, both
need to have their composite measures verified (based on their level of training) to get
accepted, then the composite measure threshold that (ep,t1) needs to meet is lower than
the composite measure threshold that (es,t2) needs to meet.?® This is in stark contrast
with the optimal mechanism where agents can withhold evidence, in which case every
agent faces the same composite measure cutoff.

Combined with the analysis of the baseline model, these results have implications for
affirmative action in college admissions. The baseline model has shown that if (i) college
applicants can to a large extent withhold evidence of training and (ii) standardized tests
are training-biased, every applicant has to achieve the same test score to get admitted,
and affirmative action is not effective. On the other hand, if condition (ii) fails (i.e.,
standardized tests are talent-biased, that is, adequately sensitive to talent), then college
admissions are no longer flawed in favor of applicants from advantaged backgrounds.
The results of this section show that if condition (i) fails (i.e., college applicants cannot
withhold evidence), then college admissions are not flawed—even if standardized tests are

training-biased. In that case, applicants from disadvantaged backgrounds will face lower

2TWe can also allow for a part of training to be observed by the principal. If the agent’s type (ep,e,t) is
distributed over [0,1]3, where e, is the publicly observed part of training and e is the privately observed
one, the optimal mechanism is a collection mechanisms like the one described in section 3: one mechanism
for each value of e,.

28To see this, notice that under a training-biased composite measure, if u(ey,t;) = u(ea,ts) = ¢ and
es > eq, then o(ey,t1) < o(ea,ts).
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test score cutoffs. We conclude that if either of the two conditions fails, affirmative action
is effective; in that case, imposing constraints on it would compromise colleges’ ability to

screen for talent.

Comparison with baseline model. Assume now that e — E, [min{u(e,t), c}| e] does
not cross zero from above. This means that if for a certain level of training e, the
principal prefers to accept every agent with training e without verification rather than pay
verification costs to reject some unworthy agents with training e, then for any higher level
of training ¢’ > e, the principal still prefers to accept every agent with training e’ without
verification.?? Then, Corollary 7.1 shows that the optimal mechanism coincides with the
optimal mechanism of the baseline model—where the agent can withhold evidence—when

the composite measure is talent-biased (see Proposition 4).

Corollary 7.1. Assume that there exists e* such that sgn {E; [min{u(e,t),c}|e]} =
sgn{e —e}. In the optimal mechanism, Il(e,t) = I(u(e,t) > core > e*), T(et) =
I(u(e,t) > c and e < e*), and P(e,t,0) = I(e > e*).

This means that as long as the composite measure is talent-biased, the ability of the
agent to withhold evidence does not constrain the principal’s ability to screen—unless
the principal switches from case (i) for some training level e to case (ii) for some training

level €/ > e in Proposition 7, which is not possible if the agent can withhold evidence.

6.1.2 Optimal screening when the agent can also present evidence of talent

Assume that the agent can also present evidence on talent. That is, agent (e,t) can
report any (e’,t') < (e,t). Then, the principal can achieve the full information first-best
without verification, inducing every agent to present all her evidence on both e and ¢.3°
Given also the results of the baseline model, we conclude that when the agent cannot
provide evidence of talent and the principal can only imperfectly verify it through a
training-biased composite measure, he is constrained in his evaluation of the agent by the
agent’s incentives to withhold evidence of training. The constraint vanishes if the agent
can also provide evidence of talent or if the composite measure is talent-biased.

The results suggest that hiding one’s effort might be more common among younger
people. If a person’s talent is revealed as she advances through successive stages of
evaluation in her career, then senior professionals should have weaker incentives to hide

their effort compared to students and early-career professionals. Indeed, university students

29A sufficient condition is that E; [min{u(e,t), c}| ] be non-decreasing in e, which is satisfied as long as
t does not stochastically depend on e “too negatively.” For example, it is sufficient that for any e’ > e,
the distribution of ¢ conditional on e’ first-order stochastically dominates the distribution of ¢ conditional
on e.

39The conclusion is the same if ¢ is observed at no cost by the principal and the agent can present
evidence on e.
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Figure 4: The optimal mechanism with private or public evidence

(a) Talent-biased o or publicly observed e (b) Training-biased o and privately observed e
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I (s)
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Note: It is assumed that e — E; [min{u(e,t), c}|e] does not cross zero from above.

have a desire to project “effortless perfection” by deliberately hiding how hard they study
(Travers et al., 2015; Casale et al., 2016). At the same time, hiding effort has been
identified as a unique expression of perfectionistic self-presentation (Flett et al., 2016),
and narcissism, which is closely linked to perfectionistic self-presentation, decreases with
age (Weidmann et al., 2023; Orth et al., 2024).

6.1.3 Optimal screening when the agent cannot present evidence

Assume that the agent can present evidence on neither training nor talent. That is, agent
(e,t) can report any (¢/,t') € [0,1]. We can still restrict attention to SIC mechanisms,

which Proposition 8 characterizes.
Proposition 8. A mechanism M = (T, P) is SIC if and only if
(i) II(e,t) is non-decreasing in ¢ for every e,
(ii) (e, 7(e,s)) is constant in e over e € [e(s),é(s)] for every s € [0,1], and
(iii) (1 —T(e,t))P(e,t,0) <T1(0,0) for every (e,t),
where II(e,t) = (1 — T(e,t))P(e,t,0) + T(e,t).

Condition (i) is identical to the one in Proposition 8, where the agent has evidence on
e. Condition (iii) is stronger (when combined with the other two conditions) than the
corresponding condition (iii) of Proposition 8. It ensures that the least talented agent

with the lowest training does not have incentives to overstate her talent or training to
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imitate an agent (e,t) with a higher composite measure. The condition is stricter than the
one in Proposition 8 because now agents can also imitate types with higher training to
potentially get accepted without verification. Thus, the need for verification is enhanced
due to the agents inability to present evidence on e. Last, condition (ii) ensures that an
agent (e,t) does not want to imitate an agent (¢’,t') with the same composite measure
o(et') = o(e,t) to get accepted with probability II(e’;t') instead of II(e,t). The condition
is stricter than the one in Proposition 8 because now agents can not only understate but
also overstate training. This nullifies the advantage that agents with high training have
(over agents with the same composite measure but lower training) when they can present
evidence.

Lemma 4 shows that we can constrain attention to mechanisms that satisfy condition
(iii) of Proposition 8 with equality. Thus, the probability of acceptance without verification

is the same for every agent type.

Lemma 4. Given any SIC mechanism M = (T,P), there exists an SIC mechanism
M' = (T",P") with (1=T"(e,t))P'(e,t,0) = II'(0,0) for every (e,t) that is outcome-equivalent
to M and has at most as high verification costs as M. For ¢ > 0, if also II(e,t) > I1(0,0)

for a positive measure of agent types, then M’ has lower verification costs than M.

By Lemma 4, TI(e,t) = T1(0,0) 4+ T'(e,t). Thus, the principal’s objective function can

be written as
/01 /6(6:) [II(e,7(e,s))(u(e,m(e,8)) — ¢) + cI1(0,0)] f(e,7(e,s))deds, (3)

which is linear in II, so by Bauer’s maximum principle, there exists an extreme Il (among
all II(e, 7(e,s)) that are constant in e and non-decreasing in s) that solves the principal’s

problem. Proposition 9 describes that extreme optimal mechanism.

Proposition 9. There exists an optimal mechanism with Il(e,t) = I(o(e,t) > s*) and
T(e,t) = Il(e,t) — I1(0,0) for some s* € [0,1]. That is, either

(i) s* =0, and every agent is accepted without verification, or

(ii) s* > 0, and each agent (e,t) is (a) accepted after verification if o(e,t) > s* or (b)

rejected without verification if o(et) < s*.

The inability of agents to present evidence of training limits the set of SIC mechanisms,

thereby decreasing the principal’s optimal payoff.3! Also, the principal now has to choose

3In more detail, when the composite measure is training-biased, if no e* € {0,1} is optimal when
the agent can present evidence (see Proposition 5), then the principal’s payoff is lower when the agent
cannot present evidence. When the composite measure is talent-biased, if e* = 0 is not optimal when the
agent can present evidence (see Proposition 4), then the principal’s payoff is lower when the agent cannot
present evidence.
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s* trading-off Type I and Type II errors even when o is talent-biased. Talent-biased
composite measures are not inherently better than training-biased ones when the agent
cannot present evidence. Unlike in the baseline model-—where all talent-biased composite
measures are equally effective (see section 4.2)—when the agent cannot present evidence,
the more closely the composite measure aligns with the principal’s preferences, the higher
the principal’s optimal payoff is, regardless of whether the composite measure is talent- or

training-biased.

6.2 Costly composite measure design

Treating the composite measure function ¢ as exogenous is reasonable in several appli-
cations. For example, in hiring for prestigious positions (section 5.1), the employee’s
production function in the less prestigious position is not chosen by the employer hiring for
the prestigious position. In promotion decisions (section 5.2), the employee’s production
function in the current position depends on her current job description and responsibilities,
which may mostly reflect the firm’s operating needs rather than support the employer’s
promotion decisions. In college admissions (section 5.3), a college usually cannot choose
the content of the standardized test.

However, in some cases (e.g., hiring decisions where verification amounts to tests and
interviews), the principal may be able to choose how the composite measure depends on
the agent’s type. How does his problem change in that case? Let there be a cost C(0)
that the principal needs to pay before the interaction with the agent, so that she can
verify the value of o during the interaction with the agent. The principal needs to design
a composite measure (if she designs one at all) before the interaction with the agent due
to time constraints and the complexity of designing a composite measure. Then, the
principal’s problem can be solved in two steps: (i) finding the optimal mechanism for each
possible o € ¥ and then (ii) choosing the optimal ¢* € ¥ from the set ¥ of conceivable
composite measure functions. The solution to the first step is the one we have already
described.3?

As shown in section 4.2, as long as the composite measure is training-biased, there
are gains from making it more sensitive to talent. On the other hand, all talent-biased
composite measures are as effective as a composite measure that is exactly aligned with
the principal’s preferences. Therefore, if composite measures more sensitive to talent
are more expensive to design, the principal will want to make the composite measure

at most as sensitive to talent as his preferences are. However, as shown in section 6.1.3,

32That is, assuming that ¥ contains only talent- and training-biased composite measures (and possibly
a composite measure that exactly matches the principal’s preferences). Also, if the composite measures
in ¥ are totally ordered (i.e., any pair of iso-composite-measure curves of any two composite measures in
¥ cross at most once), there are no gains from designing multiple composite measures to the extent that
the verification cost c is the same for all composite measures.
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when agents cannot present evidence, the principal always gains from finely calibrating
the composite measure to make it align with his preferences—regardless of whether the

composite measure is talent- or training-biased.

6.3 Endogenous training

Our characterization of the optimal mechanism applies even if training is endogenous,
as long as the principal cannot influence the agent’s training choice by committing to a
mechanism. Indeed, in hiring decisions (section 5.1), an individual employer has limited
labor market power to influence a candidate’s effort to obtain credentials. Similarly,
in college admissions (section 5.3), a single college has little influence over applicants’
preparation for standardized tests.?3

Let the agent’s talent ¢ follow a distribution with density ¢ and support [0,1]. Taking
as given the principal’s mechanism, summarized by evidence and composite measure
thresholds (e*,s*), the agent exerts costly effort # € R, to obtain training.3* The cost of
effort = is Cy(x). Training is distributed, conditional on z, according to density function
h,(e) with support [0,1]. Denote by x*(¢) the equilibrium level of effort by type t. An
equilibrium is a fixed point (z*,e*,s*), where z* : [0,1] — R, is a best-response to (e*,s*)
and (e*,s*) is a best-response to z*; that is, (e*,s*) solve the principal’s problem when the
agent’s type has density f(e,t) = g(t)he-)(€e). (z*,e*,5*) can be interpreted as a symmetric
equilibrium where each of multiple “training-taking” principals chooses thresholds (e*,s*).

While a detailed analysis of endogenous training is beyond the scope of this paper, the
following observation emphasizes the importance of the fact that the optimal mechanism
has been characterized under minimal assumptions on the agent’s type distribution (i.e.,
that it admits a full-support density). In equilibrium, agents so talented that they are
accepted even if they have e = 0 and agents so untalented that they are rejected even
if they have e = 1 do not exert effort. More generally, effort may be non-monotone in ¢.

Thus, training and talent may be stochastically dependent in complicated ways.

6.4 When P(e,t,s) may decrease with s

To see how the principal may be able to do better if he is not required to reward
higher composite measures with weakly higher acceptance probabilities, consider the

case where verification is free and the composite measure is training-biased. Il(e,t) =

33In other settings, the principal may be able to affect the agent’s training by committing to a mechanism
before the agent obtains training. For example, in promotion decisions (section 5.2), the employer may
have the power to commit to promotion rules, using the prospect of promotion to incentivize the employee
to exert effort. Of course, whether the employer wants to do that will depend (i) on the extent to which
using the prospect of promotion to incentivize effort interferes with the primary objective of promotions:
assigning employees to the positions where they are most valuable and (ii) on whether there are better
tools (e.g., performance-based bonuses) for incentivizing the employee to exert effort.

34Under a talent-biased composite measure, there is only an evidence threshold.
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I(E[u(z,y)|o(z,y) = o(e,t)] > 0) is incentive-compatible and outperforms the optimal
mechanism II(e,t) = I(o(e,t) > s*) of the baseline model if E[u(x,y)|o(z,y) = s]) <0
for a positive measure of s > s*. When this is the case, the principal’s payoff is not

single-peaked in the composite measure threshold.

7 Conclusion

Candidates for a position are often evaluated through costly tests or indices that measure
a combination of multiple underlying attributes. For example, pre-employment tests, such
as those administered during quantitative finance job interviews measure a combination
of talent and preparation. The same is true for standardized college admission tests. A
productivity metric of an employee under consideration for a promotion depends not only
on “how hard” but also on “how smart” the employee works. An academic job market
candidate’s effectiveness in responding to questions depends both on how much she has
worked on her paper and on how fast she can think on her feet.

The following problem may then arise when the evaluation of a candidate relies on
a composite measure: Even if the candidate has hard evidence on one of her valuable
qualities (call this quality training), she may strategically withhold that evidence to make
the evaluator attribute the composite measure to another quality instead (call this quality
talent). This can happen even though the evaluator values training, which means evidence
of training is otherwise favorable to the candidate.

This paper has shown that such perverse incentives arise when the composite measure
is training-biased (i.e., over-sensitive to training and under-sensitive to talent compared to
how much the evaluator values each in a candidate). In that case, the optimal mechanism
makes errors favoring high- over low-training candidates. The errors are due to two
forces: (i) the strategic incentives of candidates to withhold evidence of training when
the evaluator looks at their composite measure and (ii) the evaluator’s incentive to save
on evaluation costs by accepting high-training candidates without incurring the cost of
gauging their composite measure. On top of this, the two forces are complements in
inducing errors favoring high- over low-training candidates: The second force compromises
the informativeness of the composite measure, exacerbating the extent to which the
evaluator accepts high-training candidates without gauging their composite measure.

The results illustrate how inequalities can be perpetuated. When standardized tests
are training-biased and college applicants have considerable room to withhold evidence
of training and parental support, affirmative action (i.e., screening for talent taking
into account college applicants’ unequal backgrounds) has limited effectiveness: College
applicants from advantaged backgrounds are favored over better applicants from modest
backgrounds. Upon graduation, prestigious employers immediately hire Ivy-Leaguers,

thereby avoiding potentially having to poach them later at a higher cost. Graduates of
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less prestigious institutions need to go through less prestigious employers to prove their
worth before landing a prestigious position. They are still at a disadvantage when trying
to transition to a more prestigious position if their performance is more sensitive to talent

in the more prestigious position (if poached) than in the less prestigious one.
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A Characterization of optimal thresholds

This section discusses how the principal chooses (i) the evidence threshold under a talent-
biased composite measure and (ii) the evidence and composite measure thresholds under

a training-biased composite measure.

A.1 Talent-biased composite measure

tfbiased(

The principal chooses threshold e* € argmax, . cj v Emin),>> Where

v ey = [T et - Oluted) 2 feadedt+ [ [ ulen)fetdedr.

payoff from agents accepted after verification payoff from agents
net of verification costs accepted without verification

t—biased
e

e* € (0,1), the first-order condition is

t—biased (

Denote by v (émin) the derivative of v Emin) With respect to €,:,. When

Uz—biased(e*) _ /()1(u(€*>t) —o)(u(e*t) > c)f(e" t)dt — /01 u(e™,t) fe*t)dt
_ /0 " min{u(e* ), ¢} (e t)dt — 0,

or equivalently

>0: gain from decrease in Type II error (ii) >0: loss from increase in Type I error (iii)

Uz—biased(e*) — Al u(e*,t)I(U(e*,t) < O)f(e*,t)dt — /01 U(G*,t)l(o < U(6*7t) < c)f(e*,t)dt

_ . AlI(u(e*,t)zc)f(e*,t)dt ~0.

>0: loss from increase in verification costs (i)

We now briefly discuss some comparative statics. Notice that the cross-partial derivative
Ovt=Pased /9e of the objective function is non-positive, so by Topkis’ monotonicity theorem,
the set of optimal evidence thresholds is decreasing in ¢ in the strong set order.
Stronger results than those discussed in the text can be derived under some additional
conditions. For simplicity, assume that e* € (0,1) is unique with the second-order condition
of the principal’s problem satisfied strictly and that verification is used for a positive
measure of agents.’ Particularly, dvl="2d(¢) /0c = — [} T(u(e*,t) > ¢) f(e*,t)dt < 0, and

e

by the Implicit Function Theorem de*/dc = —dv!~2(e) /Dc|omer vl P (e*) < 0, sO €*

ee

is decreasing in c. Second, the principal’s optimal payoff is decreasing in c.

35The principal’s problem reduces to this because all mechanisms with II(e,t) = I(u(e,t) > c or e > €*)
and T'(e,t) = I(u(e,t) > c and e < e*) for some e* € [0,1] are SIC.

36Namely, u(e,t) > c for a positive measure of agents with e < e*. This rules out the case u(e,t) = e —gq,
where the principal only cares about training, in which case he does not use verification. ;
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A.2 Training-biased composite measure

efbiased(

The principal chooses thresholds (e*,s*) € arg max ]2 U CominsSmin ), Where

eminysmin)e[ovl

payoff from agents accepted after verification net of verification costs

max{min{e(s),emin },e(s)} s
v blased(emm’smln — / / (ﬂ(e,s) — C) f(e,s)deds

max{e S),emin } -
/ / u(e,s) f(e,s)deds,

ax{e(s),emin}

payoff from agents accepted without verification

where @i(e,s) = u(e,7(e,s)) and f(e,s) = f(e,r(e,s)).57
When e(s*) < e* (i.e., some agents are accepted after verification) and e*,s* € (0,1),3®

the first-order conditions with respect to e,,;, and s,,;, are, respectively,

>0: net gain from decrease in Type II error (A+B)

>0: gain from rejection of unworthy agents (ii) >0: loss from rejection of worthy agents (iii)

* *

_ /0 T (e s)I(a(e",s) < 0)F(eF,s)ds — /0 T (e s)I(a(e",s) > 0) F (e s)ds
— c/: f(e*,s)ds =0,

N— ——
>0: loss from increase
in verification costs (i)

e*

B /(e) min{@(e,s") — ¢,0} f(e,s")de /( Y max{i(e,s*) — ¢,0} f(e,5")de = 0.

>0: gain from decrease in Type II error A >0: loss from increase in Type I error A

We now describe comparative statics of e* and s* with respect to c¢. For simplicity,
assume that s*,e* € (0,1) are unique with the second-order condition of the principal’s
problem satisfied strictly and that verification is used for a positive measure of agents.
Denote by J(e*,s*) the Jacobian matrix of the first derivatives evaluated at (e*,s*), which
is by assumption negative definite. Particularly, v Psed(e* s*) pe Piased(e* o) < () and
det(J(e*,s*)) > 0. Also, v Piased(e* s*) = o b‘ased(e 5%) = — (a(e*,s*) — ¢) fe*,s*) > 0.

The total derivatives of e*and s* with respect to ¢ are:

<O direct effect of ¢ on >0: indirect effect of ¢
e* due to increase in on e* through direct
marginal verification costs effect of ¢ on s*
de* , ,
e—biased e—biased [ _* _* e—biased e—biased [ * _x*
de X = Ve, (6 S )U (6 »S )+Usc (6 S )U (6 »S )7
ds* . :
e—biased e—biased [ _* _* e—biased e—biased [ _* _*
de X — Vg (6 S )U (6 »S )+Uec (6 S )U (6 »S )7
>0: direct effect of ¢ on <0: indirect effect of ¢
s* due to increase in on s* through direct
marginal verification costs effect of ¢ on e*

3"The principal’s problem reduces to this because all mechanisms with H(e,t) = I(o(e,t) > s* or e > e*)
and T'(e,t) = I(o ( t) > s* and e < e*) for some (e*,s*) € [0,1]2 are SIC.
38Notice that e* < &(s*), for if e* > €(s*) and ¢ > 0, reducing e* would increase v(e*,s*).
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where vePased (e o¥) — — [1 f(e* s)ds < 0 and v¢; Pesed (g 5*) = fe(*s*) f(e,s%)de > 0 are

ec sc e

e—biased and Ue—biased

¢ ) with respect to c.

the partial derivatives of v

B Proofs

Proof of Lemma 1 Take a truthful mechanism M = (T',P) with P(e,t,s) given by 1
for some P,;. Construct the mechanism M’ = (T",P’) with (i) P.,(e,t) =1, (ii) T"(e,t) =
T(e,t)Pulet) < Tl(et), and (iii) P'(e,t,0) = (1 — T(e,t))P(e,t,0)/(1 — T'(e,t)) for any
(e,t).3” We have then that (a) T'(e,t)P.,(e,t) = T(e,t)Puleyt), (b) (1 —T'(e,t))P'(e,t,0) =
(1 —T(et))P(e,t,0) and (c) IT'(e,t) = TI(e,t) for any (e,t). (a)-(c) combined imply that
the problem of every agent type under M’ is the same as it was under M, so M’ is also
truthful. (c¢) means that M’ is outcome-equivalent to M. Last, for ¢ > 0, M’ saves on

verification costs compared to M if there exists (a positive measure of types) (e,t) with

T(e,t) >0 and Py(et) < 1. Q.E.D.

Proof of Proposition 1 Denote the total probability with which type (e,t) is accepted
if she reports (¢/,t') (with €’ < e) by

P(etet) =1 =T )P0+ T tHI(co(et) > o(et)).

Also, define condition (iii’) to say that (1 — T'(e,t))P(e,t,0) < II(e',0) for every e,t,e’ with
e < ¢, which is stronger than condition (iii).

Step 1: 1 first show that condition (i) is necessary for incentive-compatibility by showing
the contrapositive. Assume that for some e ty,ty with to > ¢, II(e,ty) < II(e,t1). Then,
incentive-compatibility of type (e,ts) is violated, since ]5(e,t1; ety) = (ety) > (e, ts).

Step 2: 1 now show that condition (iii’) is necessary for incentive-compatibility by
showing the contrapositive. Assume that for some e,e’,t with ¢’ > e, (1—T(e,t))P(e,t,0) >
I1(¢/,0). Then, incentive-compatibility of type (¢/,0) is violated, since P(e,t; e0) >
(1 —="T(e,t))P(e,t,0) > TI(e,0).

Step 3: 1 now show that provided that (i) and (iii’) are satisfied, II(r, 7(r,o(e,t))) being
non-decreasing in r over r € [e(o(e,t)),e] for every (e,t) is necessary and sufficient for SIC.
Incentive-compatibility of type (e,t) is satisfied if and only if

max [(1 —=T(,t)P(e,t';0) + T (et (a(et) > a(e )] = e,t). (4)

(e/,t")<(e,1)

Assume that conditions (i) and (iii’) are satisfied. Then, Il(e,t) > II(e,0) > (1 —

39In P'(e,t,0), if T (e,t) = 1, cancel (1 —T(e,t)) in the numerator with (1 —T"(e,t)) in the denominator.
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T(e ")) P(et'0) for any (e',t') with ¢’ < e. Therefore, (4) is equivalent to

(1= T( )Pt 0) + T(e )] = (et). (5)

max
(e/,t")e{(z,y)€[0,1]2:x<e and o(e,t)>o(z,y)}

Given that II(e,t) is non-decreasing in ¢ (condition (i)), (5) can equivalently be written as

max  {[1 —T(r,7(r,o(e,t))]P(r,r(ro(et)),0) + T(rr(roet)))} = Uet)

refe(a(et)) el

or equivalently,

e € argmax Il(r,7(r,o(et))). (6)
rele(a(et))e]
Thus, incentive-compatibility is satisfied for every type if and only if for every (e,t),
(6) is satisfied. This is true if and only if II(r, 7(r,0(e,t))) is non-decreasing in r for
r € [e(o(e,t)),e] for every (e,t).
That the latter is sufficient for (6) to hold for every (e,t) is immediate. I show
necessity by showing the contrapositive. Assume that for some (e,t), there exist ry,ro
with e(o(e,t)) < r; < ry < e such that (re, 7(ra,0(e,t))) < I(ry, 7(r1,0(e,t))). Then,

ro & argmax Il(z,7(x,0(et))),
zele(o(est)),r2]

since (r9, 7(re,0(e,t))) prefers to imitate type (ry, 7(r1,0(e,t))).

Step 4: It is easy to see that II(r,7(r,0(e,t))) being non-decreasing in r over r €
le(o(e,t)),e] for every (e,t) is equivalent to condition (ii).

Step 5: Finally, notice that provided that conditions (i) and (ii) hold, conditions (iii)
and (iii’) are equivalent. That (iii’) implies (iii) is immediate. We will show that the
opposite direction also holds. Assume that conditions (i), (ii), and (iii) hold. Then, for

any e,e’,t with ¢/ > e
11(¢/0) = TH(e, 7(e.0(¢0))) = T1(e0) = (1 — T(e.t)) Ple.t.0)

where the first inequality follows from condition (ii),*® the second from condition (i), and

the third from condition (iii). Q.E.D.

40The first inequality assumes that e > e(o(e’,0)). If this is not the case, using conditions (i) and (ii)
iteratively, we can still show that II(e’,0) > II(e,0).
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Proof of Lemma 2 Take any SIC mechanism M = (T,P). Then, construct the
mechanism M’ = (T",P') with*!

T'(e,t) ==T(et) — I(e,0) = (1 — T(e,t))P(e,t,0) + T(e,t) — I1(e,0)
< II(e,0) + T'(e,t) — I(e,0) = T'(e,t), and
I1(e,0) (1 —"T(e,t))P(e,t,0)

PRt = T ien) + Te0) = 1= Tie) = (1= T(et)Plesd) L&t

for every (e,t), where the inequalities follow from II(e,0) > (1 — T'(e,t))P(e,t,0), which is
implied by condition (iii) of Proposition 1. By construction we have that II'(e,t) = I1(e,t)
for every (e,t), so M’ satisfies conditions (i) and (ii) of Proposition 1. We also have that
for every (e t), II'(e,0) = TI(e,0) = (1 — T"(e,t)) P'(e,t,0), so M’ also satisfies condition (iii)
of Proposition 1. Therefore, M’ is SIC. Last, for ¢ > 0, M’ saves on verification costs
compared to M if there exists (a positive measure of) (e,t) with P(e,t,0)(1 —T(e,t)) <
I1(e,0), since T"(e,t) < T'(e,t) for such (e,t). Q.E.D.

Proof of Lemma 3 Tt is useful to look at the principal’s choice as a function I(e,r(e,s))
of (e,s). Denote by P C L*({(e,s) € [0,1]* : e € [e(s),e(s)]}) the space of non-decreasing
functions from {(e,s) € [0,1]* : e € [e(s),e(s)]} to [0,1]. P is convex and compact (e.g., see
Yang and Yang, 2025). The objective function (2) is linear (and thus convex) in II. By
the Dominated Convergence Theorem, it is also continuous in II. By Bauer’s maximum
principle, it follows that there exists a maximizing function (e,s) — Il(e,7(e,s)) that is
an extreme point of P. Last, a function (e,s) — Il(e,7(e,s)) is an extreme point of P if
and only if II(e,7(e,s)) € {0,1} for all (e,s) in its domain (see Theorem 40.1 in Choquet,
1954). Q.E.D.

Proof of Proposition 2 Condition (iii) of Proposition 1 is immaterial given ¢ = 0. We
need to show that Il(e,t) = I (u(e,t) > 0) satisfies conditions (i) and (ii).

Condition (i): It suffices to show that for any (e,t), if II(e,t) = 1, then II(e,t') = 1
for every t' > t. Indeed, for any (e,t), [I(e,t) = 1 implies that u(e,t) > 0, which in turn
implies u(e,t’) > 0 for every ¢’ > t given that u(e,t) is non-decreasing in ¢.

Condition (ii): Similarly, it suffices to show that for any (e,s), if II(e,7(e,s)) = 1, then
II(e',7(e',s)) = 1 for every €' € [e,e(s)]. Indeed, for any (e,s), if II(e,7(e,s)) = 1, then
u(e,r(e,s)) > 0, which in turn implies that u(e’,7(¢’,s)) > 0 for every €’ € [e,e(s)].

To see why the last part follows, assume instead that u(e’,7(¢’,;s)) < 0 for some
¢ € [e,e(s)]. Particularly, it must be ¢ > e. Since o is talent-biased, there exists e
such that if r > e, (resp. r < ) and o(r,t) = s, then u(r,t) > 0 (resp. u(rt) <0). We
have that u(e/,7(¢/,s)) < 0, so o being talent-biased implies that ¢’ < e;. But € > e, so

41For (e,t) such that II(e,t) = 1 and II(e,0) = 0, set P’'(e,t,0) = 0.
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e < es, and since o(e,7(e,s)) = s, o being talent-biased implies that u(e,7(e,s)) < 0, a
contradiction to Il(e,7(e,s)) = I (u(e,7(e,s)) > 0) = 1. Q.E.D.

Proof of Proposition 3 Step 1: In definition 5 of a training-biased composite measure,
for s such that u(e,t) > ¢ = 0 (resp. u(e,t) < 0) for every (e,t) € I,(s), es may not be
uniquely defined. In that case, for s such that u(e,t) > 0 (resp. u(e,t) < 0) for every
(e,t) € I,(s), set es = €(s) (resp. e; = e(s)). We will show that e, is non-decreasing in s.
Take any s,5 € [0,1] with 5 > s, and define S := (es,e;) N [e(5),e(3)] N [e(s),e(s)].

Step 1, case 1: If S = (), then e; < es. To see this, consider the following two subcases.

Step 1, case 1(a): if e(5) > €(s), then e, <e(s) < e(3) < eg, s0 €5 < es.

Step 1, case 1(b): if e(3) < €(s), then S = (es,e5) N [e(5),e(s)]. Since S = 0, either

e(3) > es ore(s) < es. If e(5) > ey, then e; < e(3) < e5, s0 5 < eg. Similarly, if €(s) < ez,
then e; <e(s) < es, so es < es.

Step 1, case 2: We now prove by contradiction that if S # (), then e; < es. To this
end, assume that S # () and e; > es. Given that S # (), we can take some e* € S. Since
e* € [e(s),e(s)] and o is continuous, there exists t* € [0,1] such that o(e*,t*) = s. Since
o is training-biased and e* < e, it follows that u(e*,t*) > 0. Similarly, since (i) o is
training-biased, (ii) e* > ez, and (iii) e* € [e(5),e(3)], there exists t** € [0,1] such that
o(e*,t**) =35 and u(e*,t**) < 0. Also, because 5 > s and o(e,t) is increasing in ¢, t** > ¢*.
Overall, we have t** > t* and u(e*,;t*) > 0 > u(e*,t™), a contradiction to u(e,t) being
non-decreasing in t.

Step 2: Given e, define also tg implicitly given by o(es,ts) = s. We have then that
for every composite measure s € [0,1], (es,ts) is the “threshold” agent who lies on the
iso-composite-measure curve I,(s). That is, any other agent (e,t) on that iso-composite-
measure curve with e < ey (resp. e > e;) gives—if accepted—a positive (resp. negative)
payoft to the principal.

We divide the problem of finding an optimal mechanism in three parts. First, we fix
an arbitrary “partial” SIC mechanism s — Il(eg,ts) for every s € [0,1]. Then, we complete
that partial SIC mechanism (i.e., we assign a value to Il(e,t) for every (e,t) for which
II(e,t) has not been assigned a value in the first step), so that the complete mechanism is
SIC and optimal given the fixed partial mechanism. Finally, we find an optimal partial
mechanism.

Step 3: Fix the value of Il(eg,ts) for every s € [0,1] such that these values are part
of some SIC mechanism.*? Given that e, is non-decreasing in s, by Proposition 1, the
values of Il(es,ts) are part of some SIC mechanism only if II(e,ts) is non-decreasing in s.
Therefore, by Proposition 3, there exists an optimal mechanism with II(es,ts) = I(s > s*)

for some s* € [0,1].

42That is, fix the value of II(eg,ts) for every s € [0,1] to be such that there exists incentive-compatible
I : [0,1]> — [0,1] that agrees with the values of II(e,t;) for every s € [0,1].
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Step 4: 1t follows then that for the complete mechanism to be SIC, it must be that (i)
II(e,t) = 1 for every (e,t) such that e > e, and o(e,t) > s* and (ii) II(e,t) = 0 for every
(e,t) such that e < e; and o(e,t) < s*. Also, since (es,ts) is the “threshold” agent, the
principal wants to make Il(e,t) as high (resp. low) as possible for every (e,t) such that
e < e (resp. e > e5). Thus, given the incentive-compatibility constraint, it is optimal to
set (i) II(e,t) = 1 for every (e,t) such that e < e; and o(e,t) > s* and (ii) Il(e,t) = 0 for
every (e,t) such that e > e, and o(et) < s*. Q.E.D.

Proof of Proposition 4 By conditions (i) and (ii) of Proposition 1, any SIC mechanism
has I1(e,0) non-decreasing in e. Thus, given Lemma 3, there exists an optimal mechanism
with II(e,0) = 1 for every e > e* for some e* € [0,1]. The objective function (2) then

becomes

A /:{{(())}} [M(e,r(e,5))(ule,r(e,s)) = )] fler(e.s))deds
—i—/ol /31 u(e,t) f(e,t)dedt.

The mechanism affects the second term only through e*. Given e*, setting Il(e,t) =
I(u(e,t) > cor e > e*) maximizes the first term and—given that o is talent-biased—
makes the mechanism SIC, since it satisfies conditions (i) and (ii) of Proposition 1. 7" and
P are backed out from Lemma 3. Q.E.D.

Proof of Proposition 5 By conditions (i) and (ii) of Proposition 1, any SIC mechanism
has II(e,0) non-decreasing in e. Thus, given Lemma 3, there exists an optimal mechanism
with II(e,0) = 1 for every e > e* for some e* € [0,1]. The objective function (2) then

becomes

[ et ule(es) - o) flerles)deds
+ /0 1 / ju(e,t) F(e.t)dedt.

The mechanism affects the second term only through e*. Given e*, maximizing the
first term is equivalent to the problem studied by Proposition 3 with the principal’s
payoff function given by u(e,t) — ¢. Thus, for e < e*, Il(e;t) = I(o(et) > s*) for
some s* € [0,1] maximizes the first term under the incentive-compatibility conditions,
when the problem is restricted to (e,t) < (e*,1). The complete mechanism then has
[I(e,t) = I(o(et) > s* or e > e*), which satisfies conditions (i) and (ii) of Proposition 1.
T and P are backed out from Lemma 3. Q.E.D.
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Proof of Proposition 6 We will use the objective function defined in section A. First,

t— blased( e— blased(

notice the following relationship between v’ emin) and v° CminsSmin):

) 1
Ui_blased(emin) :A (U(emimt) — C)I(u(emimt) > C) emzm / emm’ emm’t)dt
>

== /0 ' [mins) L (Eminss) < ) + L(i(Eminss) = )] F(eminss)ds

Smin ~ 1
- / a(eminas)f<eminas)ds - C/ f(emm,S)dS
0 Smin

e— blased(

=, Emin 78mm)

— / W(emin,s) — €) [L(@(eminss) < €) — I(s < Smin)] f (Emin,s)ds.

Now, fix some training-biased composite measure o and take any s* such that (e*,s*) €

arg max e-blased (o o $in) for some e* under o. Define

€min Smin
U(emm,()é) ::avtfbiased(emm) 4 (1 o OZ)Uefbiased(emm’s*).

* _ t—Dbiased . *
Take any €} j;,..q € argmax, — v(€min,1) = argmax, v (emin) and €}_piceq €
e—biased(

argmax,  U(€min,0) = argmax, v emin,S*). Given the relationship between

t—biased(

e—biased
Ve (

emin) and v CminsSmin), We have that

e—biased

0%V (i,
M emzn) - Ue (eminvs*)

— ?Jt blabed(

O€min0a

- / W (eminss) — €) [L(@(eminss) < ¢) — I(s < )] F(eminss)ds > 0,

50 V(€emin,) has increasing differences in (e,,,,a), and Topkis’ Monotonicity Theorem
implies that argmax, V(€min,) is increasing in « in the strong set order. Therefore,

: * * :s * e—biased
(1> €1 —biased Z €e—biased OT (11) €1 —biased S arg maXemm v (
,Ut—biased (

* *
Emin,S ) and €e—biased €

t—biased(

emin)- We conclude that for any ef .. .4 € argmax, v €min) and

€min
eminasmin>7 (1> e;fk—biased > e:—biased or (H)

4 € viPissed(e ). Notice also

* * e—biased
(ee—biased7se—biased) € arg maX(emm,smm) v (
* e—biased
€t _biased € arg maXem' v (

in

that if € 1 ;.q € (0,1), then vi=Piased(er - 1) > 0, and thus, if also vf=Pased(e, .Y is
Q.E.D.

*
Emin;Se— biased) and ee biase:

single-peaked in e,,;,, the inequality is strict: €} 1. ..q > €r_piased-

Proof of Proposition 7 and Corollary 7.1 Denote by taccept(€) i= Jy u(e,t) f(e,t)dt/
fol f(et)dt the expected payoff from accepting without verification every agent with
training e, and by ety (€) = fy (u(e,t) — c)L(ule,t) > c)f(e,t)dt/ [y f(e,t)dt the expected
payoft from accepting after verification every agent with training e who gives payoff at

least c.
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_ Jpulet)f(et)dt — fi (u(e,t) = o)L(u(et) > o) f(et)dt
fo1 flet)dt
_ Jy min{u(e,t), e} f(et)dt
fol fet)dt

and the results follow. Q.E.D.

Uaccept (6) - uverify(e)

= E; [min{u(e,t), c}| e],

Proof of Proposition 8 Denote the total probability with which type (e,t) is accepted
if she reports (¢/,t') (with €’ < e) by

P(etet) =1 =T ))PEHD)+ T ) (o(et) > al(et)).

Also, define condition (iii’) (a strengthening of condition (iii)) to say that (1 —
T(e,t))P(et,0) <TI(e,0) for every e,t,e'.

Step 1: T first show that condition (i) is necessary for incentive-compatibility by
showing the contrapositive. Assume that for some e,t;,to with to > ¢y, (e t2) < II(e,ty).
Then, IC of type (e,ts) is violated, since 15(6,251; e,ts) = Il(e,ty) > I(ets).

Step 2: 1 now show that condition (iii’) is necessary for incentive-compatibility by show-
ing the contrapositive. Assume that for some e,e’,t, (1 — T(e,t))P(e,t,0) > II(e’,0). Then,
incentive-compatibility of type (¢/,0) is violated, since P(e,t;e’,0) > (1 —T(e,t))P(et,0) >
I1(e',0).

Step 3: 1 now show that provided that (i) and (iii’) are satisfied, II(r, 7(r,0(e,t)))
being constant in r over r € [e(o(e,t)),e] for every (e,t) is necessary and sufficient for

incentive-compatibility. Incentive-compatibility of type (e,t) is satisfied if and only if

max [(1—="T(e,t))P(',t';0) +T(e ) (o(et) > a(et))] =TI(et). (7)

(e/,t)<(1,1)

Assume that conditions (i) and (iii’) are satisfied. Then, Il(e,t) > II(e,0) > (1 —
T(e't))P(e,t',0) for any (¢',t'). Therefore, (7) is equivalent to

max (1= T(e' #)P(et';0) + T(e )] = T(e,t). (8)

(¢/,t)e{(z)€[0,1]%:0(est) 20 (x,y) }

Given that II(e,t) is non-decreasing in ¢ (condition (i)), (8) can equivalently be written as

max  {[1 =T (r,7(r,0(e,t)]P(r,r(ro(et)),0) + T(rr(roet)))} = (e, t)

re [§(0(67t))71]

or equivalently,

e e argmax  1(r,7(r,o(e}))). (9)
refe(a(est))e(o(et))]
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Thus, incentive-compatibility is satisfied for every type if and only if for every (e,t),
(9) is satisfied. This is true if and only if II(r,7(r,0(e,t))) is constant in r for r €
le(o(e,t)),e(o(et))] for every (e,t).

Step 4: It is easy to see that condition (ii) is equivalent to II(r, 7(r,0(e,t))) being
constant in r over r € [e(a(e,t)).e(o(e,t))] for every (e,t).

Step 5: Finally, notice that provided that conditions (i) and (ii) hold, conditions (iii)
and (iii’) are equivalent. Q.E.D.

Proof of Lemma 4 Take any SIC mechanism M = (T',P). Condition (iii) of Proposition
1 says that I1(0,0) > (1 — T'(e,t)) P(e,t,0) for any (e,t). Then, construct the mechanism
M’ = (T' P') with*

T'(et) = (e,t) — 11(0,0) = (1 — T(e,t)) P(e,t,0) + T(e,t) — 11(0,0)
< I1(0,0) + T'(e,t) — T1(0,0) = T'(e,t), and
11(0,0) (1 —T(e,t))P(e,t,0)

Plet) = 1— T(e.d) £ T1(0.0) = 1= T(e.t) + (1 — T(e.t)) Pletd) Plet,0)

for every (e,t), where the inequalities follow from I1(0,0) > (1 — T'(e,t))P(e,t,0). By
construction, II'(e,t) = Il(e,t) for every (e,t), so M’ satisfies conditions (i) and (ii) of
Proposition 8. Also, for every (e,t),IT'(0,0) = I1(0,0) = (1 — T"(e,t)) P'(e,t,0), so M’ also
satisfies condition (iii) of Proposition 8. Therefore, M’ is SIC. Last, for ¢ > 0, M’ saves

on verification costs compared to M if there exists (a positive measure of) (e,t) with
P(e,t,0)(1 —T(e,t)) < I1(0,0), since T"(e,t) < T'(e,t) for such (e,t). Q.E.D.

Proof of Proposition 9 Straightforward and thus omitted.

431f 11(0,0) = 0, then for (e,t) such that I(e,t) = 1, set P’(e,t,0) = 0.
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Online Appendix

Multidimensional screening of strategic agents

Orestis Vravosinos

C (m + n)-dimensional screening of strategic agents

We now generalize the results allowing for multiple dimensions of training and talent. Let
the agent’s type be (e1,eq, ... emt1,ta, ... t,) with full-support density f : [0,1]""" —
Ryi. (e1,e2,...,6n) are different dimensions of training and (1,ts, ... ,t,,) are different
dimensions of talent. The agent can present any combination of evidence e’ € [0, e]. The
composite measure o : [0,1]*" — [0,1] is continuous and increasing. u(e,t) is continuous
and non-decreasing. It follows by the same arguments as in the bidimensional type case
that truthful mechanisms that accept the agent with certainty if she meets the appropriate
composite measure threshold are without loss.

Lemma 5 makes the following additional observation: Among agents with the same
training and composite measure, SIC mechanisms cannot screen for different dimensions
of talent. That Il(e,t) = Il(e,t') for every e,t,t’ with o(e,t) = o(e,t’) is necessary to
ensure that no agent has incentives to present all her evidence but misreport her talent to

imitate an agent with the same composite measure.

Lemma 5. If a mechanism M = (T, P) is SIC, then Il(e,t) = [I(e,t’) for every e,t,t' such
that o(e,t) = o(e,t’).

Therefore, we restrict attention to mechanisms with Il(e,t) = I1(e,t’) for every e,t,t’
such that o(e,t) = o(e,t’). Lemma 6 shows that we can further restrict attention to
mechanisms that treat agents with the same training and composite measure exactly the

same way with respect to verification and acceptance probabilities.

Lemma 6. Given any SIC mechanism M, there exists an SIC mechanism M’ = (1", P’)
with T"(e,t) = T'(e,t') and P'(e,t,0) = P'(e,t’,0) for every e,t,t’' such that o(e,t) = o(e,t’)
that is outcome-equivalent to M. Also, for ¢ > 0, in any optimal mechanism M = (T, P),
T(e,it) =T(e,t') for almost every e,t,t’ such that o(e,t) = o(e,t’).

Here is the intuition behind this result. The only reason to verify an agent’s composite
measure before accepting her—rather than accept her without verification—is to prevent
others from imitating her. Take any agent (e,t) who contemplates which of the agents
in the set X(e',s) .= {(€/,t) : o(€,t') = s}, where €’ < e, to imitate. By Lemma 5, II
is the same for every agent in X (e,s), so if o(e,t) > s, then agent (e,t)’s payoff from

imitating an agent in X (e’,s) does not depend on which particular agent she chooses to
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imitate. If, on the other hand, o(e,t) < s, agent (e,t)’s payoff from imitating an agent
(e',t') € X(€,s) is increasing (resp. decreasing) in P(e’,t',0)) (resp. T(e',t')). Among
all agents in X (€',s), (e,t) will want to imitate the one with the highest probability of
acceptance without verification. Thus, the principal can decrease T'(€’,t') and increase
P(e t'0) for every agent (e',t') € X(€',s) with T(€/,t') > inf(er pyex(e,s) T(€”,t") (and
thus P(e",t',0) < super yex(e.s) P(€'t",0)) keeping II fixed. Therefore, among agents
with the same training and composite measure, there is no point in verifying the composite
measure of some agents with higher probability than others, as doing so does not reduce
incentives of others to misreport their type and leads to higher than necessary verification
costs.

Thus, we can restrict attention to mechanisms with Il(e,t) = (e, t’), T(e,t) = T(e,t’),
P'(et,0) = P'(e,it',0), and P(e,t,s) = P(e,t',s) for every e,t,t' ;s such that o(e,t) =
o(e,t').* In other words, the principal can constrain attention to mechanisms that ask
agents only for evidence and a claim about their composite measure (rather than a whole
profile of talent dimensions). The principal designs a mechanism M = (T,P), where
T :[0,1]™ — [0,1] and P : [0,1]™* x ([0,1] U {@}) — [0,1]. Proposition 10 generalizes

the SIC characterization of Proposition 1 to the case of (m + n)-dimensional screening.
Proposition 10. A mechanism M = (T',P) is SIC if and only if
(i) II(e,s) is non-decreasing in s over s € [o(e,0),0(e,1)] for every e € [0,1]™,

(ii) II(e,s) is non-decreasing in e over e € {e € [0,1]™ : 0(e,0) < s < o(e,1)} for every
s € [0,1], and

(iii) (1 —T(e,s))P(e,s,0) < T(e,o(e,0)) for every (e,s) € [0,1]™,

where I(e,s) == (1 — T'(e,s))P(e,s,0) + T'(e,s) is the probability with which an agent is

accepted if she truthfully reports her training e and composite measure s.

The conditions are analogous to those of Proposition 1. There are no incentive-
compatibility conditions on the comparison between the values of T, P, or II for agent
types (e,t) and (€',t') such that e 2 €’ and e £ €', because neither agent type has the
evidence to imitate the other.

Lemma 7 generalizes Lemma 2, showing that we can constrain attention to mechanisms

that satisfy condition (iii) of Proposition 10 with equality.

Lemma 7. Given any SIC mechanism M = (T,P), there exists an SIC mechanism
M' = (T",P") with (1-T"(e,s))P'(e,s,0) = IT'(e,o(e,0)) for every (e,s), s € [o(e,0),0(e,1)]

that is outcome-equivalent to M and has at most as high verification costs as M. For

“That P(e,t,s) = P(e,t’,s) for every s € [0,1] when o(e,t) = o(e,t’) follows already from restricting
attention to mechanisms that accept the agent with certainty if she meets the appropriate composite
measure threshold.
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¢ > 0, if also Il(e,s) > I1(e,o(e,0)) for a positive measure of (e,s)’s, then M’ has lower

verification costs than M.

Define f(e,s) = Jicpan I(o(et) = s)f(et)dt, the probability density of agents
with training e and composite measure s, and u(e,s) = Eju(et)lo(et) = s] =
Jeep.ap u(e,t)I(o(e,t) = s)f(e,t)dt/f(e,s), the principal’s expected payoff from accepting
all agents with training e and composite measure s. u(e,s) is assumed to be increasing in
5.%5 The principal’s objective function is fj - - - f f;((;’ol)) [[(e,s)i(e,s) — cT(e,s)] f(e,s)ds
dey - - -de,,. By Lemma 7, condition (iii) of Proposition 10 is satisfied with equality
by the optimal mechanism, so in the objective function we can substitute T'(e,s) =
II(e,s) — II(e,o(e,0)). Then, the objective function reads

/ / /U(e 1) s)(i(e,s) — ¢) + cIl(e,o(e,0))] f(e,s)dsde; - - - dey,,  (10)

which is linear in II, so by Bauer’s maximum principle, there exists an extreme I[I-—among

all II that are non-decreasing in s and e—that solves the principal’s problem.

Lemma 8. There exists an optimal mechanism that is deterministic.

C.1 Talent-biased composite measure

The definition of a talent-biased composite measure generalizes to the case of (m + n)-

dimensional screening as follows.

Definition 6. o is talent-biased if for every e,e’ € [0,1]™ and every composite measure
s € [max{o(e,0),0(e’,0)}, min{o(e,1),0(e',1)}], if u(e,s) > ¢ > u(e’,s) with at least one
inequality holding strictly, then e % e.

Generalizing Proposition 4, Proposition 11 derives the optimal mechanism under a

talent-biased composite measure.

Proposition 11. If ¢ is talent-biased, then there exists an optimal mechanism with
[I(e,s) = I(u(e,s) > cor e € E*) and T'(e,s) = I(u(e,s) > c and e ¢ E*) for some upper
set £* of [0,1]™ (i.e., E* C [0,1]™ such that for any e € E* and €’ € [0,1]™, if €’ > e, then
e € E*).1

45For (e,s) such that s = o(e,0), u(e,s) = u(e,0). u(e,s) being increasing in s guarantees that the
indifference sets of the principal, (%) := {(e,s) € [0,1]™*! : u(e,s) = u}, are m-dimensional, as assumed
in the case of m = n = 1. The results can also be derived with %(e,s) non-decreasing in s, which would
somewhat complicate the proofs.

46Clearly, if ¢ = 0, E* = () without loss. If ¢ > 0, E* D {e € [0,1]™ : u(e,o(e,0)) > c}. This has to
be true, because among the agents who are accepted, an agent’s comp051te measure should be verified
only if this will prevent others from imitating her. Any agent who has enough evidence to imitate an
agent (e,0) with u(e,o(e,0)) > ¢ and get accepted also has composite measure at least as high as (e,0)’s.
Therefore, (e,0)’s composite measure should not be verified if @(e,o(e,0)) > ¢

A3



C.2 Training-biased composite measure

The definition of a training-biased composite measure generalizes to the case of (m + n)-

dimensional screening as follows.

Definition 7. o is training-biased if for every e,e’ € [0,1]™ and every composite measure
s € [max{c(e,0),0(e’,0)}, min{o(e,1),0(e',1)}], if u(e,s) > ¢ > u(e’,s) with at least one
inequality holding strictly, then e’ > e.

Generalizing Proposition 5, Proposition 12 derives the optimal mechanism under a

training-biased composite measure.

Proposition 12. If ¢ is training-biased, then there exists an optimal mechanism with
II(e,s) =1I(s > s* or e € E*) and T'(e,s) = I(s > s* and e ¢ E*) for some s* € [0,1] and

some upper set E* of [0,1]™.47

D Proofs of results in Appendix C

Proof of Lemma 5 Take any two agents (e,t) and (e,t’) with o(e,t) = o(e,t’). (e,t)’s
incentive-compatibility requires I1(e,t) > Il(e,t'). (e,t’)’s incentive-compatibility requires
(et > Il(et). Q.E.D.

Proof of Lemma 6 Take any SIC mechanism M. Construct the mechanism M’ =
(T',P") with®

T'(e)t) = inf T(et) <T(et), and

t' s.t. o(et')=c(e,t)
l(et) —T'(e;t)
1—-T'(e)

Il(e,t) — T(e,t)
1 —-T(et)

P'(e,t,0) = > = P(e,t,0)

for every (e,t). Then, IT'(e,t) = (1 — T"(e,t))P'(e,t,0) + T'(e,t) = Il(e,t) for every (e,t),

where the second equality follows by construction of M’. Thus, M’ is outcome-equivalent

to M. Given that M is SIC, outcome-equivalence implies that under M’, no agent has

incentives to imitate an agent with composite measure that is not higher than their own.
It remains to show that under mechanism M’, no agent has incentives to imitate an

agent with higher composite measure than her own. Take any agent (e,t), training €’ < e,

and talent #'. Tt holds that

I'(e,t) = Il(e,t) > sup (1—T(e\£)P(e £0)}

ts.t. o(e t)=c(e t')

4TIf ¢ > 0, then E* D {e € [0,1]™ : u(e,0(e,0)) > s*}, because among the agents who are accepted, an
agent’s composite measure should be verified only if this will prevent others from imitating her.
For e such that infy g4 o(e,t)=0(et) T(€:t) = 1, set P'(e,t,0) = P(e,t,0).
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= sup (e t) — T(e’,f)}

ts.t. o(e't)=a(e t')

=T(e't') — inf T(e't)

ts.t. o(e f)=a(e t)

— (e ) ~ T'( ) = (1 - T'(e.¢)P'(e D).

where (i) the first equality follows by construction of M’, (ii) the inequality because M is
SIC, (iii) the second equality by definition of II, (iv) the third equality by Lemma 5 and M
being SIC, which together imply that I1(e’,t) = II(e’,#') for every t such that o(e’,t) = s,
(v) the fifth inequality by construction of M’, and the final equality by definition of II'.
We have thus shown that for any agent (e,t), II'(e,t) > (1 — T'(e',t'))P'(€',t',0) for every
(e',t') < (e,1), so under mechanism M’ no agent has incentives to imitate an agent with

higher composite measure than her own. For ¢ > 0, M’ also minimizes verification costs.
Q.E.D.

Proof of Proposition 10 The proof proceeds like the proof of Proposition 1 and is
thus omitted. Q.E.D.

Proof of Lemma 7 The proof proceeds like the proof of Lemma 2.

Take any SIC mechanism M = (T,P). Condition (iii) of Proposition 10 says that
Il(e,c(e,0)) > (1 — T(e,s))P(e,s,D) for any (e,s). Then, construct the mechanism
M' = (T',P") with*

T'(e,s) =1l(e,s) — II(e,0(e,0)) = (1 —T(e,s))P(e,s,0) + T'(e,s) — Il(e,o(e,0))
<Il(e,o(e,0)) + T(e,s) —1l(e,o(e,0)) =T(e,s), and

II(e,o(e,0)) (1 - T(e,5))P(es,0)
I~ Te.s) + N(eo(e0) = 1= Mes) + (1~ Tles)Plesd) o

P'(e,s,0) =

for every (e,s), where the inequalities follow from II(e,o(e,0)) > (1 — T'(e,s))P(e,s,D).
By construction, IT'(e,s) = II(e,s) for every (e,s), so M’ satisfies conditions (i) and (ii) of

Proposition 1. Also, for every (e,s)
II'(e,0(e,0)) =1(e,c(e,0)) = (1 —T'(e,s))P'(e,s,D),

so M’ also satisfies condition (iii) of Proposition 1. Therefore, M’ is SIC. Last, for ¢ > 0,

M’ saves on verification costs compared to M if there exists (a positive measure of) (e,s)
with P(e,s,0)(1 —T(e,s)) < I(e,o(e,0)), since T'(e,s) < T(e,s) for such (e,s). Q.E.D.

Proof of Proposition 11 Let M = (T, P) be an optimal deterministic mechanism with
II(e,s) = (1 — T(e,s))P(e,s,0) + T(e,s). Define E* .= {e € [0,1]™ : II(e,o(e,0)) = 1}

“9For (e,s) such that II(e,s) = 1 and II(e,o(e,0)) = 0, set P’'(e,s,0) = 0.
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(so II(e,o(e,0)) = 0 for every e ¢ E*). Given that M is SIC, conditions (i) and (ii) of
Proposition 10 combined imply that E* is an upper set of [0,1]™. To see this, take any e €
E* and any €' € [0,1]™. If € > e, then II(e',0(€’,0)) > II(e,o(€',0)) > Il(e,0(e,0)) =1,
so II(e’,0(e’,0)) = 1 and thus € € E*. The first inequality follows from condition (ii) and
€' > e. The second inequality follows from condition (i), €’ > e, and o being increasing.5
Also, condition (i) of Proposition 10 implies that Il(e,s) = 1 for every e € E* and

every s € [0,1]. Then, the principal’s objective function (10) can be written as

(e 1) ~
/ / i(e,s)f(e,s)dsde + / (u(e,s) — c)] f(e,s)dsde.
ecE* Jo(e,0) eZE*

The first term depends on the mechanism M only through E*. The second term depends on
the mechanism M only through the values of I for e & E*. Setting Il(e,s) = I(u(e,s) > ¢)
for every e ¢ E* maximizes the second term. It is also incentive-compatible.

To show this, we first prove that Il(e,s) = I(u(e,s) > ¢ or e € E*) satisfies condition
(i) of Proposition 10. Take any e,s,s’ with s’ > s. It suffices to show that Il(e,s’) = 0
implies I1(e,s) = 0. If [I(e,s’) = 0, then @(e,s’) < c and e & E*. Since u(e,s) is increasing
in s, u(e,s) < u(e,s’) < c. Therefore, II(e,s) = 0.

It remains to show that Il(e,s) = I(u(e,s) > cor e € E*) satisfies condition (ii)
of Proposition 10. Take any e,e’,s with ¢ > e. We need to show that II(e’,s) = 0
implies I1(e,s) = 0. If TI(e’,s) = 0, then u(e’,;s) < c and e’ ¢ E*. It follows then that
e & E*, since E* is an upper set of [0,1]™, € > e, and €' ¢ E*. It remains to show that
u(e,s) < c. We will show this by contradiction. Assume that @(e,s) > ¢. Then, we have
that u(e,s) > ¢ > u(€,s), which, given that o is talent-biased, implies that € # e, a
contradiction. Q.E.D.

Proof of Proposition 12 Let M = (T,P) be an optimal deterministic mechanism with
II(e,s) = (1 — T(e,s))P(e,s,0) + T(e,s). Define E* .= {e € [0,1]™ : II(e,o(e,0)) = 1}
(so II(e,o(e,0)) = 0 for every e ¢ E*). Given that M is SIC, conditions (i) and (ii) of
Proposition 10 combined imply that E* is an upper set of [0,1]™

Also, condition (i) of Proposition 10 implies that Il(e,s) = 1 for every e € E* and

every s € [0,1]. Then, the principal’s objective function (10) can be written as

(e 1) ~
/ / i(e,s)f(e,s)dsde + / (u(e,s) — c)] f(e,s)dsde.
ecE* Jo(e,0) eZE*

The first term depends on the mechanism M only through E*. The second term depends
on the mechanism M only through the values of II for e ¢ E*.
Take any (e,s),(€',s") € I-(c) \ E* with s # s’. That (e,s),(€’,s") € I;(c) means that

50Tf o(e’,0) > o(e,1), then II(e,o(e’,0)) is not well-defined (since there is no agent with training e and
composite measure o(e’,0)) but the inequalities still follow if we use conditions (i) and (ii) iteratively.
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u(e,s) = u(e',s') = c. First, we show that if € # e, then s’ < s. Let €' # e:

Case 1: if s € [0(e,0),0(e,1)], then o being training-biased implies that u(e,s’) < c.
To see this, notice that if instead u(e,s’) > ¢, then we would have u(e,s’) > ¢ = u(€’,s),
so the composite measure being training-biased would imply that € > e, a contradiction.
We then have that @(e,s’) < ¢ = u(e,s). Particularly, u(e,s’) < ¢ = u(e,s) and s’ < s,
because s’ # s and by assumption, @(e,s) is increasing in s.

Case 2: if s’ < o(e,0), then since s € [0(e,0),0(e,1)], it follows that s’ < s.

Case 3a: if s > o(e,1) and o(e,1) € [0(€',0),0(€’,1)], then because o(e,1) > s
and u(e,s) is increasing in s, it follows that u(e,o(e,1)) > u(e,s) = c¢. Thus, we have
u(e,o(e1)) > c=u(e,s) > u(e,o(el)), so the composite measure being training-biased
implies that €’ > e, a contradiction. Therefore, Case 3a is impossible.

Case 3b: if s > o(e,1) and o(e,1) < o(€’,0), then by continuity and monotonicity of
o and because o(e,1) € [0(0,0),0(€’,0)) there exists e” < €’ such that o(e”,0) = o(e,1).
We have then that

u(e,o(el)) > ule,s) =c=u(e,s) > . (IIlltI)l u(e't)
:o(e’t)=s'

= u(e’, argmin u(e’,t)) > u(e”, argmin u(e',t)) > u(e”,0)
t:o(et)=s' t:o(e t)=s'

= [u(e” t)|o(e"t) = o(e”,0)] = u(e”,0(e",0)) = u(e”,o(e,1))

with at least one inequality holding strictly. The first line follows because o(e,1) > s,
u(e,s) is increasing in s, (e,s),(€e',s") € I-(c), and u(€e',s") = E[u(e',t)|o(e't) = '] >
Ming.q (e 1)=s (€',t). The second line follows because €’ > €”, argmin,,, (s o u(€',t) > 0,
and v is non-decreasing. The third line follows because, given that ¢ is increasing, the
only value of ¢ that makes o(e”,t) = o(€”,0) is t = 0; also, o(e”,0) = o(e,1). Given that
o is training-biased, u(e,o(e,1)) > ¢ > u(e”,0(e,1)) with one inequality strict implies
that €’ > e, which combined with e€” < €’ implies €’ > e, a contradiction. Thus, Case 3b
is impossible.

Case 3c: if & > o(e,1) and o(e,1) > o(€’,1), then we arrive at a contradiction since
s’ > o(e’,1) is not possible. Thus, Case 3c is impossible.

We have thus shown that for any (e,s),(e’,s) € I+(c) \ E* with s # ¢/, if € # e, then
s’ < s. This is equivalent to its contrapositive: for any (e,s),(e’,s') € I-(c) \ E*, if &' > s,
then € > e. Therefore, by conditions (i) and (ii) of Proposition 10, there exists s* € [0,1]
such that for any (e,s) € Iz(c) \ E*, ll(e,s) = I(s > s*).

It remains to find the values for (e,s) ¢ I-(c) U E*. Take any (e,s) & I-(c) U E*.

Case 1: If u(e*,s) = ¢ for some e* such that s € [o(e*,0),0(e*,1)], then

Case 1a: if u(e,s) < c and s > s*, then u(e*,s) = ¢ > u(e,s), so because o is training-
biased, e > e*, and thus condition (ii) of Proposition 10 requires that II(e,s) > II(e*,s) = 1,
which implies II(e,s) = 1.
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Case 1b: If u(e,s) > c and s < s*, then u(e,s) > ¢ = u(e*,s), so because o is training-
biased, e* > e, and thus condition (ii) of Proposition 10 requires that I1(e,s) < II(e*,s) = 0,
which implies II(e,s) = 0.

Case 1c: If u(e,s) < c and s < s*, then set II(e,s) = 0, which is what the principal
would ideally want to do with (e,s) if he was not constrained by incentive-compatibility.

Case 1d: 1If u(e,s) > c and s > s*, then set II(e,s) = 1, which is what the principal
would ideally want to do with (e,s) if he was not constrained by incentive-compatibility.

Case 2: If u(€e',s) < c for every €’ such that s € [o(e’,0),0(€,1)], then it is easy to see
that s < s*. Set Il(e,s) = 0, which is what the principal would ideally want to do with
(e,s) if he was not constrained by incentive-compatibility.

Case 3: If u(e',s) > c for every €’ such that s € [o(e’,0),0(€,1)], then it is easy to see
that s > s*. Set Il(e,s) = 1, which is what the principal would ideally want to do with
(e,s) if he was not constrained by incentive-compatibility.

Putting all the above cases together, we get that for (e,s) € I-(c) U E*, II(e,s) = I(s >
s*). Given the definition of E*, we get that for any (e,s) such that s € [0(e,0),0(e,1)],
II(e,s) = I(s > s* or e € E*). To conclude the proof, notice that II satisfies conditions
(i) and (ii) of Proposition 10, and is thus SIC. Therefore, by solving a relaxed problem
ignoring the incentive-compatibility constraints in cases 1c, 1d, 2, and 3, we have also

solved the original problem. Q.E.D.
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