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Abstract

A principal must decide whether to accept or reject an agent. The principal can
verify at a cost the value of a composite measure of the agent’s training and talent.
The measure does not reveal training and talent separately. The agent can present
evidence of training but not of talent. Although favorable, evidence can make the
principal ascribe the value of the composite measure to training, thereby negatively
affecting his assessment of the agent’s talent. Thus, verification may distort the
agent’s incentives to present evidence. Indeed, when the composite measure is
less sensitive to talent than talent is valuable to the principal, a conflict arises
between the two evaluation methods: (i) verification and (ii) asking for evidence.
The optimal mechanism leads to three types of errors, all favoring high- over low-
training agents: (i) It rejects some worthy low-training agents, while (ii) accepting
some unworthy high-training ones without verification and (iii) also accepting some
unworthy medium-training ones after verification.
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1 Introduction

In many settings, a candidate’s suitability for a position depends on multiple valuable
qualities, such as education, training, knowledge, intelligence, or adaptability. The
candidate has hard evidence on some qualities (e.g., education) but not others (e.g.,
intelligence). I refer to the qualities that the candidate has evidence on as training and
the ones that she does not have evidence on as talent. While the evaluator cannot ask for
evidence of talent, he can however try to verify talent at a cost. Nevertheless, in many real-
world environments, the evaluator cannot verify talent in isolation; instead, he can verify
(the value of) a composite measure of training and talent without being able to disentangle
the individual contribution of each of the two to the composite measure. This makes
evidence of training critical for the evaluator to extract information about the candidate’s
talent through verification of the composite measure. For instance, standardized college
admission tests pick up a combination of talent and training, which makes information
about an applicant’s training crucial when the admissions committee tries to extract
information about the applicant’s talent from the test score.

Ideally, the evaluator would seamlessly combine evidence and verification, using
evidence to learn about training and verification to gauge talent, conditional on what
he has learned about training through evidence. In practice, however, this may not
be straightforward. Although presenting all her evidence to convince the evaluator of
her training is, in principle, in the candidate’s best interest, verification can distort her
incentives to present evidence. Specifically, evidence of training may lead the evaluator to
attribute the composite measure to training, thereby negatively affecting his assessment
of the candidate’s talent. Therefore, to manipulate how the evaluator interprets the
composite measure, the candidate may strategically withhold evidence of training.

This can create a conflict between the two evaluation tools: (i) verification and (ii)
asking for evidence of training. Under what circumstances does the conflict arise? When
it does, how does the evaluator use evidence and verification to optimally evaluate the
candidate while taking the conflict into account? These are the questions that this paper
aims to answer.

The tension between verification and asking for evidence is ubiquitous. A college
applicant may downplay her parental support or how much effort she has exerted to portray
her academic performance and standardized test scores as results of her brilliance rather
than effort or supportive background, thereby aiming to get admitted by a college that
values talent and potential. For example, she can hide her background or how intensively
she has studied in the past by (i) overstating the struggles that she has gone through,
(ii) not mentioning tutoring or extracurricular activities, (iii) withholding information
on her parents’ education or professions, or even (iv) hiding her race.1 A job candidate

1Indeed, there is evidence that applicants may not only hide their race but even misrepresent it.
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might downplay her background and prior effort to make the employer attribute her
achievements and pre-employment test results, such as aptitude or skill tests, to talent
and hire her. An employee may understate how long she took to complete a task to make
the employer attribute her productivity to ability (i.e., the rate at which her work hours
translate into value to the firm) and promote her. This strategy can pay off if promotion
decisions rely mostly on the employer’s beliefs concerning the employee’s ability—because
the importance of ability increases (relative to the importance of working long hours) if
the employee is promoted. An academic on the job market may strategically withhold
certain results, saving them to answer audience questions later to appear exceptionally
adept at thinking on her feet.

This way of thinking is so fundamental that children also seem to follow it. Students
often eagerly proclaim they have not studied hard for an exam—not only when they have
performed poorly but also when they have performed exceptionally well. By stressing
their low effort or even understating it, they may be trying to have their score attributed
to their presumptive brilliance. The desire to project “effortless perfection” has been
documented among university students, who often deliberately hide how hard they study
(Travers et al., 2015; Casale et al., 2016).

Despite how fundamental this way of thinking is, to the best of my knowledge, no
prior work has studied the following problem: evaluating people when—to affect how a
composite measure of their various virtues is interpreted—they can strategically withhold
evidence that both (i) is, in principle, favorable to them and (ii) contains useful information
for the evaluator. I study the problem in the following principal-agent setting. In the
baseline setting, the agent has a bidimensional type.2 The first dimension is her training
(e.g., a college or job applicant’s socioeconomic background, effort, and training, an
employee’s effort, a researcher’s knowledge) and the second is her talent (e.g., a college or
job applicant’s innate ability, an employee’s efficiency or managerial skills, a researcher’s
ability to think fast).3 The agent can present hard evidence to prove any part of her
training but cannot prove her training is not even higher than what the evidence she has
presented suggests. She cannot unilaterally prove anything about her talent.

The value of the agent to the principal (i) is non-decreasing in both training and
talent and (ii) can be positive or negative. The principal ultimately wants to make a

In a 2021 survey, 34% of white Americans admitted to lying about being a racial minority on their
college application (see https://www.intelligent.com/34-of-white-college-students-lied-about-their-race-
to-improve-chances-of-admission-financial-aid-benefits). 48% of people who lied claimed to be Native
American, and 3/4 of those who lied were accepted by the colleges that they lied to.

2The results are generalized to types of any finite dimension in the Online Appendix.
3Although plausibly endogenous in some cases (e.g., when a college admissions committee decides

whether to admit an applicant who can choose to withhold evidence of effort), I solve the problem for
exogenous evidence and then extend the model to allow for endogenous evidence production. Section 5.3
shows that the structure of the optimal mechanism remains qualitatively the same even if evidence is
endogenous (i.e., produced by the agent before her interaction with the principal), as long as the principal
cannot influence evidence production by committing to a mechanism before the agent produces evidence.
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binary choice: accept the agent (and receive the value of the agent as payoff) or reject
her (and receive payoff 0). He does so by committing to a mechanism that asks the agent
to (i) present evidence of training and (ii) make a cheap talk statement about her talent.
Conditional on the evidence presented and the cheap talk statement made, the mechanism
then (i) either verifies the value of a composite measure of the agent’s training and talent
and then accepts or rejects her conditional on that value or (ii) makes the acceptance or
rejection decision without verification. The latter option is relevant because verification is
(possibly) costly to perform. The composite measure is an increasing scalar function of
the agent’s training and talent. The agent wants to get accepted independently of her
type.

If the composite measure measures exactly what the principal values in an agent (so
that the principal’s preference is to accept the agent if and only if the composite measure is
high enough), then the value of verification is apparent. But what happens if the principal
values talent (relative to training) to a different degree than the composite measure reflects
talent (relative to training)? In other words, what if the principal’s marginal rate of
substitution between talent and training differs from the marginal rate of substitution
between talent and training in the composite measure (i.e., holding fixed the value of the
composite measure)?

If the composite measure is more sensitive to talent than talent is valuable to the
principal, verification does not create incentives for the agents to withhold evidence. Then,
the principal can ask for evidence and at the same time verify the value of the composite
measure without having to worry about the agent withholding evidence. The main result
concerns the optimal screening mechanism in the opposite case: when the composite
measure is less sensitive to talent than talent is valuable to the principal. In that case, the
optimal evaluation scheme never combines evidence and verification in the evaluation of a
certain agent. Rather, it asks for evidence of training only to accept some high-training
agents without verification. The optimal mechanism favors high- over low-training agents:
(i) It accepts some high-training agents—including unworthy ones (i.e., who give the
principal a negative payoff when accepted)—without verifying their composite measure
but rather only by asking them for a certain level of evidence of training; and (ii) among
agents who do not meet that threshold level of evidence, (iia) it accepts (after verification)
some unworthy agents with high training but low talent while (iib) rejecting some worthy
agents with high talent but low training.

Remarkably, this is the structure of the optimal mechanism in the extreme case where
the principal only values talent (i.e., his payoff for accepting the agent is increasing in
talent and constant in training).4 The principal still optimally favors high-training agents
even though training is worthless to him. He does so for two reasons: (i) to save on

4When the principal’s payoff for accepting the agent depends only on talent, the composite measure is
automatically less sensitive to talent than talent is valuable to the principal.
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verification costs by accepting high-training agents without verifying their composite
measure and (ii) because agents can withhold evidence of training to imitate more talented
agents.

There is an important interaction between these two forces. The first force pushes
towards high-training agents being favored—even in the extreme case where training is
worthless—because the second force is also present. To see this, assume that the principal
verifies every agent’s composite measure. Because agents can withhold evidence of training,
the principal will optimally accept some unworthy high-training agents, who can withhold
evidence of training to manipulate the interpretation of the composite measure. Now
allow the principal to also choose which agents’ composite measure to verify. Then, if
verification is costly, he may optimally choose to accept some high-training agents without
verification. This means that the principal will accept even more unworthy high-training
agents than he would if he chose to verify everyone’s composite measure. In addition to
the unworthy agents who would get accepted even with verification, unworthy agents who
are too untalented to get accepted with verification (even if they withhold evidence of
training) will now get accepted without verification. This increase in false acceptances
can be more than counterbalanced by the decrease in verification costs.

The results capture a stark contrast in the difficulty of hiring different types of
employees. When training (that can be proven through hard evidence) is most valuable,
the hiring process is easy. On the other hand, when talent—which is assessed through a
composite measure that is also sensitive to training—is most valuable, the hiring process is
flawed, favoring candidates with high training at the expense of equally or more valuable
candidates with great talent but limited training.

The results have implications for hiring, promotions, and college admissions. In the
context of promotions, training can be understood as the employee’s effort, and talent can
be understood as her efficiency (i.e., the rate at which effort translates into productivity
or value to the firm) or managerial skills.5 The employer can verify the employee’s
productivity. Then, the payoff to the principal from accepting (i.e., promoting) the
employee is the difference between her productivity in the new position (if promoted)
and her productivity in her current position. The payoff is, as assumed, non-decreasing
in effort and efficiency if both effort and efficiency have a (weakly) higher marginal
productivity in the higher position. This is indeed the case if the higher position comes
with increased responsibilities that allow the employee’s effort and talent to have a larger
impact. Talent being (relative to effort) more important in the higher position than in
the current one is also a natural assumption. Then, the composite measure (i.e., current
productivity) is less sensitive to talent than talent is valuable to the employer, which
means some hard-working employees are (optimally) promoted—either with or without

5The employee has chosen effort in a previous stage (see section 5.3 for a discussion of endogenous
evidence production) and can show or hide how much effort she has exerted.
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their productivity verified—although their promotion destroys firm value. At the same
time, some talented but not hard-working employees are not promoted to managerial
positions, although their promotion would generate value for the firm.

Consider, now, hiring by a prestigious employer. Evidence is the candidate’s CV
quality (e.g., high school quality, undergraduate institution quality and GPA, awards,
distinctions, reference letters), and talent is her ability and drive not captured by the
evidence. Verification amounts to letting a less prestigious employer hire the candidate—
with the option to poach the candidate later at a cost after observing her performance
with that employer. In the optimal mechanism, Ivy-Leaguers are immediately hired by
prestigious employers, whereas worthy candidates with less impressive credentials have to
go through less prestigious employers to prove their worth before they land a prestigious
position. If the candidates’ performance in the less prestigious position is less sensitive to
talent than talent is valuable in the more prestigious position, worthy candidates with low
credentials are at a disadvantage not only in the first stage of hiring by the prestigious
employer but also in the poaching stage.

Lastly, the results have implications for affirmative action in college admissions (i.e.,
trying to control for applicants’ unequal backgrounds). Affirmative action is not very
effective if both of the following conditions are satisfied: (i) College applicants can to a
large extent hide their privilege, education, and preparation and (ii) standardized test
scores reflect talent (e.g., relative to socioeconomic background and prior education,
training, and preparation) less than colleges value talent. If both conditions hold, the
optimal admissions policy requires roughly the same test score from every applicant
for admission—regardless of background. However, if any of the two conditions fails,
affirmative action is effective, and we should expect its reversal to significantly reduce
diversity in college admissions.

The hiring and college admissions applications combined illustrate how inequalities can
be perpetuated. When standardized tests are under-sensitive to talent, college applicants
from privileged backgrounds with superior access to high-quality education and extensive
preparation have an advantage over equally or more worthy candidates from disadvantaged
backgrounds. Upon graduation, those from prestigious institutions have an advantage in
the labor market over more worthy candidates from less prestigious institutions.

After a discussion of related literature, section 2 presents the model. Section 3
characterizes incentive-compatible mechanisms and then solves the principal’s problem.
Section 4 discusses applications. Section 5 presents extensions of the model. Section 6
concludes. Proofs are gathered in Appendix A.

Related literature. This paper contributes to the multidimensional screening literature
(see, e.g., Armstrong, 1996; Rochet and Choné, 1998; Rochet and Stole, 2003). Although
duality approaches have proven useful in verifying a mechanism’s optimality (Rochet and
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Choné, 1998; Carroll, 2017; Daskalakis et al., 2017; Cai et al., 2019), full characterizations
of multidimensional screening problems remain challenging. Partial characterizations
have, for example, been obtained (i) for the case where the principal can use costly
instruments in screening (Yang, 2022) or (ii) that derive sufficient conditions for menus
with specific characteristics to be optimal for a multiproduct monopolist (Haghpanah and
Hartline, 2021; Yang, 2023). I advance this literature by proposing a novel and insightful
multidimensional screening problem and deriving a full characterization under general
assumptions. My analysis does not rely on ironing procedures (see, e.g., Mussa and Rosen,
1978; Myerson, 1981; Rochet and Choné, 1998) or the duality approach. Instead, I show
that the principal’s problem can be reduced to maximizing a linear (and thus convex)
and continuous functional over a (convex and compact) space of monotone functions.
Bauer’s maximum principle then implies an extreme point solves the problem.6 The proof
proceeds using properties of extreme points of spaces of monotone functions. In that
sense, my paper is also related to recent papers that characterize extreme points of spaces
of monotone functions (see, e.g., Kleiner et al., 2021; Yang and Zentefis, 2024; Yang and
Yang, 2025).

This paper also fits into the literature on models with costly verification. A main
difference between my model and existing models with costly verification is that in existing
work, verification amounts to either the revelation of the agent’s one-dimensional type (see,
e.g., Townsend, 1979; Gale and Hellwig, 1985; Dunne and Loewenstein, 1995; Ben-Porath
et al., 2014; Bizzotto et al., 2020; Erlanson and Kleiner, 2020; Halac and Yared, 2020; Li,
2020; Kattwinkel and Knoepfle, 2023) or the revelation of one dimension of the agent’s
multi-dimensional type (see, e.g., Glazer and Rubinstein, 2004; Carroll and Egorov, 2019;
Li, 2021). Therefore, the interpretation of the verification result is not influenced by the
agent’s initial disclosure as in my model, where the substitutability between the different
dimensions is key.

Nevertheless, the composite measure that verification reveals is not entirely new to
the literature. It is reminiscent of the signal-jamming problem in career concern models
(see, e.g., Holmström, 1999). Still, in these models the main force is the agent’s incentives
to exert effort in order to influence the principal’s learning (though costless observation of
the agent’s productivity) of the agent’s talent. Here, I focus on information transmission
and verification.7 I show that if the principal can ask for hard evidence of effort, the signal-
jamming problem is mitigated if productivity is sensitive enough to talent—compared
to the principal’s preferences for accepting (e.g., promoting) the agent. However, when
productivity is not sensitive enough to talent, the signal-jamming problem persists even if
the principal can ask for evidence of effort. Agents have incentives to withhold evidence,

6Manelli and Vincent (2007) also use Bauer’s maximum principle to study a multidimensional screening
problem.

7Other differences from career concerns models is that the principal has commitment power and
verification is costly.
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which they should be paid information rents to reveal.
The paper has links to a few other strands of the literature, particularly persuasion

games (Viscusi, 1978; Grossman, 1981; Milgrom, 1981), evidence games (see, e.g., Shin,
1994; Dziuda, 2011; Hart et al., 2017), and models with signal manipulation (Frankel
and Kartik, 2019, 2022; Perez-Richet and Skreta, 2022; Ball, 2025) or costly lying (e.g.,
Kartik, 2009; Sobel, 2020).

2 A model of multidimensional screening with sub-
stitutable attributes and costly verification

There are an agent (she) and a principal (he). The agent is privately informed of her
bidimensional type (𝑒,𝑡), which has a full-support density 𝑓 : [0,1]2 → R++. No other
assumption is imposed on 𝑓 ; any form of stochastic dependence between 𝑒 and 𝑡 is allowed.
𝑒 is the agent’s evidence. An agent of type (𝑒,𝑡) can present any level of evidence 𝑟 ∈ [0,𝑒].
By presenting evidence 𝑟 she proves that her 𝑒 is at least 𝑟. However, she cannot prove
that she is not withholding evidence. 𝑡 is the agent’s talent, which she cannot unilaterally
prove anything about.8

Verification. By paying a cost 𝑐 ≥ 0, the principal can verify the value of a composite
measure of the agent’s evidence and talent. 𝜎(𝑒,𝑡) ∈ [0,1] is the composite measure
of the agent’s type (𝑒,𝑡). 𝜎 : [0,1]2 → [0,1] is increasing and continuous in 𝑒 and
𝑡.𝐼𝜎(𝑠) := {(𝑒,𝑡) ∈ [0,1]2 : 𝜎(𝑒,𝑡) = 𝑠} denotes an iso-composite-measure curve.

Payoffs. Ultimately, the principal must decide whether to accept or reject the agent.
He receives (gross of verification costs) Bernoulli payoff 𝑢(𝑒,𝑡) from accepting an agent
of type (𝑒,𝑡), where 𝑢 : [0,1]2 → R is non-decreasing and continuous in 𝑒 and 𝑡. If he
rejects the agent, he receives payoff normalized to 0. 𝐼𝑢(𝑢) := {(𝑒,𝑡) ∈ [0,1]2 : 𝑢(𝑒,𝑡) = 𝑢}
denotes an indifference curve of the principal.9 The agent’s Bernoulli payoff is equal to 1
if accepted and 0 if rejected.

Canonical examples. In a linear specification, 𝑢(𝑒,𝑡) := 𝛾𝑢𝑒 + (1 − 𝛾𝑢)𝑡 − 𝑞, where
𝛾𝑢 ∈ [0,1] measures how much the principal values 𝑒 versus 𝑡, and 𝑞 ∈ (0,1) measures the
threshold quality that the agent needs to have to be of (positive) value to the principal.
Similarly, 𝜎(𝑒,𝑡) := 𝛾𝑠𝑒 + (1 − 𝛾𝑠)𝑡, where 𝛾𝑠 ∈ (0,1) measures how sensitive the composite

8It is straightforward to see that the model also captures the case where evidence measures a
combination of two qualities. Let type (𝑒,𝑡) be able to present any level of evidence 𝑟 ∈ [0,𝜀(𝑒,𝑡)], where
𝜀(𝑒,𝑡) is increasing in 𝑒 and 𝑡. Then, we can redefine the agent’s type to be (̃︀𝑒,𝑡), where ̃︀𝑒 := 𝜀(𝑒,𝑡) and 𝑡
measures the part of talent not captured by evidence ̃︀𝑒.

9𝐼𝑢(𝑢) is assumed to be a curve for any 𝑢. This is the case if, for example, 𝑢(𝑒,𝑡) is increasing in 𝑒 or 𝑡.
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measure is to 𝑒 relative to 𝑡. In a Cobb-Douglas specification, 𝑢(𝑒,𝑡) := 𝑒𝛾𝑢𝑡1−𝛾𝑢 − 𝑞 and
𝜎(𝑒,𝑡) := 𝑒𝛾𝑠𝑡1−𝛾𝑠 with 𝛾𝑢 ∈ [0,1] and 𝛾𝑠,𝑞 ∈ (0,1). No parametric assumptions are imposed
on 𝑢 or 𝜎. For simplicity in depiction, all figures use the linear specification.

The principal’s problem. To decide whether to accept the agent, the principal commits
to a direct mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩ that specifies: (i) the probability 𝑇 (𝑒,𝑡) ∈ [0,1] with
which the principal will verify the composite measure if the agent presents evidence 𝑒 and
sends cheap talk message 𝑡 and (ii) the probability 𝑃 (𝑒,𝑡,𝑠), which should be non-decreasing
in 𝑠 ∈ [0,1], with which the principal will accept the agent after the agent has presented
evidence 𝑒 and sent cheap talk message 𝑡, and the composite measure is 𝑠 ∈ [0,1].10 If
the composite measure is not verified, 𝑠 = ∅ and the agent is accepted with probability
𝑃 (𝑒,𝑡,∅). Notice that (𝑒,𝑡) refers to the message sent by the agent. When necessary to
avoid confusion, we will denote by (𝑒′,𝑡′) the agent’s message to distinguish it from the
agent’s type, which in those cases will be denoted by (𝑒,𝑡). Overall, the principal designs
a mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩, where 𝑇 : [0,1]2 → [0,1] and 𝑃 : [0,1]2 × ([0,1] ∪ {∅}) → [0,1]
with 𝑃 (𝑒,𝑡,𝑠) non-decreasing in 𝑠 ∈ [0,1], and (breaking the agent’s indifferences in his
favor) an agent response rule 𝜑 : [0,1]2 → [0,1]2 to maximize

∫︁ 1

0

∫︁ 1

0

⎧⎨⎩
⎡⎣

probability that (𝑒,𝑡) is
accepted after verification⏞  ⏟  

𝑇 (𝜑(𝑒,𝑡))𝑃 (𝜑(𝑒,𝑡), 𝜎(𝑒,𝑡))

+ [1 − 𝑇 (𝜑(𝑒,𝑡))]𝑃 (𝜑(𝑒,𝑡), ∅)⏟  ⏞  
probability that (𝑒,𝑡) is

accepted without verification

⎤⎦ 𝑢(𝑒,𝑡) − 𝑐 𝑇 (𝜑(𝑒,𝑡))

⏟  ⏞  
probability of verification of

(𝑒,𝑡)’s composite measure

⎫⎬⎭ 𝑓(𝑒,𝑡)𝑑𝑡𝑑𝑒

subject to the agent’s incentive compatibility (IC) constraint

𝜑(𝑒,𝑡) ∈ arg max
(𝑒′,𝑡′)≤(𝑒,1)

{𝑇 (𝑒′,𝑡′)𝑃 (𝑒′,𝑡′,𝜎(𝑒,𝑡)) + (1 − 𝑇 (𝑒′,𝑡′))𝑃 (𝑒′,𝑡′, ∅)}⏟  ⏞  
total probability that (𝑒,𝑡) is accepted if she reports (𝑒′,𝑡′)

.

3 Optimal multidimensional screening with substi-
tutable attributes and costly verification

This section characterizes incentive-compatible (IC) mechanisms and then solves the
principal’s problem.

10The condition that 𝑃 (𝑒,𝑡,𝑠) be non-decreasing in 𝑠 ∈ [0,1] can be understood as an incentive-
compatibility condition in a model where 𝜎(𝑒,𝑡) is the (maximum) composite measure that agent type
(𝑒,𝑡) can achieve, and the agent can intentionally manipulate her composite measure downwards.
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3.1 Simplifying the class of mechanisms

Before characterizing IC mechanisms, we show that we can without loss restrict the class
of mechanisms that we need to consider.

Truthful mechanisms are without loss. The first simplification is that the principal
can without loss of optimality restrict attention to truthful mechanisms (i.e., mechanisms
that induce truth-telling). To see why, notice that the correspondence (𝑒,𝑡) ↦→ {(𝑒′,𝑡′) ∈
[0,1]2 : 𝑒′ ≤ 𝑒}, which maps each agent type (𝑒,𝑡) to the messages she can send, satisfies
the Nested Range Condition of Green and Laffont (1986), who show that under this
condition, the set of implementable social choice functions coincides with the set of
truthfully implementable social choice functions.11 Therefore, we define IC mechanisms
as follows.

Definition 1. A mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩ is IC if for every (𝑒,𝑡) ∈ [0,1]2

(𝑒,𝑡) ∈ arg max
(𝑒′,𝑡′)≤(𝑒,1)

{𝑇 (𝑒′,𝑡′)𝑃 (𝑒′,𝑡′,𝜎(𝑒,𝑡)) + (1 − 𝑇 (𝑒′,𝑡′))𝑃 (𝑒′,𝑡′, ∅)} .

Mechanisms that are deterministic after verification are without loss. Next, we
can constrain attention to mechanisms with threshold acceptance policies after verification;
that is, mechanisms such that

𝑃 (𝑒,𝑡,𝑠) =

⎧⎪⎨⎪⎩0 if 𝑠 < 𝜎(𝑒,𝑡)

𝑃𝑎𝑡(𝑒,𝑡) if 𝑠 ≥ 𝜎(𝑒,𝑡)
(1)

for any (𝑒,𝑡) and some 𝑃𝑎𝑡 : [0,1]2 → [0,1], where 𝑎𝑡 is a mnemonic for the probability of
acceptance after verification (provided that the threshold composite measure 𝜎(𝑒,𝑡) is
met). If type (𝑒,𝑡) reports her type truthfully, then if the composite measure is verified,
she is accepted with probability 𝑃𝑎𝑡(𝑒,𝑡). Notice that the threshold is set exactly equal
to the composite measure that a truthfully-reporting agent will achieve. To see why
constraining attention to such mechanisms is without loss of optimality, observe that
among all mechanisms that (conditional on verification) accept type (𝑒,𝑡) with probability
𝑃𝑎𝑡(𝑒,𝑡), the one that satisfies equation (1) minimizes incentives of other types to imitate
(𝑒,𝑡).12

11Essentially, the principal implements a social choice function 𝑔 : [0,1]2 → [0,1]2 × [0,1][0,1], where
𝑔1(𝑒,𝑡) the probability of verification, 𝑔2(𝑒,𝑡) the probability of acceptance conditional on no verification,
and 𝑔3(𝑒,𝑡,·) a self-map on [0,1] that (conditional on verification) maps the composite measure 𝑠 to the
probability 𝑔3(𝑒,𝑡,𝑠) of acceptance.

12Namely, accepting the agent with even higher probability for performing above 𝜎(𝑒,𝑡) will result in
the same probability of accepting type (𝑒,𝑡) in case of verification and only give additional incentives to
other agents to imitate (𝑒,𝑡). Similarly, there is no reason to accept the agent for composite measures
lower than 𝜎(𝑒,𝑡). Particularly, this argument holds when we compare all mechanisms with the same
verification policy 𝑇 and thus equal verification costs.
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We can further restrict attention to mechanisms that accept the agent with certainty if
she meets the composite measure threshold (i.e., 𝑃𝑎𝑡(𝑒,𝑡) = 1 for every (𝑒,𝑡)). To see why,
denote the total probability with which agent (𝑒,𝑡) is accepted if she truthfully reports
her type by Π(𝑒,𝑡) := (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) + 𝑇 (𝑒,𝑡)𝑃𝑎𝑡(𝑒,𝑡) and define outcome-equivalent
mechanisms as follows.

Definition 2. A mechanism 𝑀 ′ ≡ ⟨𝑇 ′,𝑃 ′⟩ is outcome-equivalent to a mechanism 𝑀 ≡
⟨𝑇,𝑃 ⟩ if for every (𝑒,𝑡), Π(𝑒,𝑡) = Π′(𝑒,𝑡), where Π(𝑒,𝑡) ≡ (1−𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅)+𝑇 (𝑒,𝑡)𝑃𝑎𝑡(𝑒,𝑡)
and Π′(𝑒,𝑡) ≡ (1 − 𝑇 ′(𝑒,𝑡))𝑃 ′(𝑒,𝑡,∅) + 𝑇 ′(𝑒,𝑡)𝑃 ′

𝑎𝑡(𝑒,𝑡).

Lemma 1 shows that when verification is costly, in any optimal mechanism, an agent
whose composite measure is verified is accepted with probability 1 if she passes the
appropriate threshold. When verification is free, it is still without loss to constrain
attention to mechanisms that accept the agent with probability 1 if she passes the
appropriate composite measure threshold.

Lemma 1. Given any IC mechanism 𝑀 , there exists an IC mechanism 𝑀 ′ ≡ ⟨𝑇 ′,𝑃 ′⟩
with 𝑃 ′

𝑎𝑡(𝑒,𝑡) = 1 for every (𝑒,𝑡) that is outcome-equivalent to 𝑀 . Also, for 𝑐 > 0, in any
optimal mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩, 𝑃𝑎𝑡(𝑒,𝑡) = 1 for any (𝑒,𝑡) such that 𝑇 (𝑒,𝑡) > 0.13

The intuition behind this result is as follows. The only reason to accept an agent
after verification—rather than accept her without verification—is to prevent others from
imitating her. The total probability with which each agent is accepted is the sum of (i) the
probability (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) of acceptance without verification and (ii) the probability
𝑇 (𝑒,𝑡)𝑃𝑎𝑡(𝑒,𝑡) of acceptance after verification (provided that the composite measure passes
the threshold.). But then, simply put, if the principal pays for verification, he may as well
set 𝑃𝑎𝑡(𝑒,𝑡) = 1 to assign as large a part as possible of the total probability of acceptance
to the case of acceptance after verification.

In more detail, if agent (𝑒,𝑡) is not accepted with certainty after meeting the threshold
(i.e., 𝑃𝑎𝑡(𝑒,𝑡) < 1 and 𝑇 (𝑒,𝑡) > 0), we can (i) increase the probability 𝑃𝑎𝑡(𝑒,𝑡) of acceptance
in case of verification, (ii) decrease the probability 𝑇 (𝑒,𝑡) of verification, and (iii) decrease
(if positive) the probability 𝑃 (𝑒,𝑡,∅) of acceptance in case of no verification, keeping fixed
both (a) the probability (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) of acceptance without verification and (b)
the probability 𝑇 (𝑒,𝑡)𝑃𝑎𝑡(𝑒,𝑡) of acceptance after verification. By doing so, we (i) keep
fixed the total probability Π(𝑒,𝑡) of accepting (𝑒,𝑡), (ii) reduce the probability 𝑇 (𝑒,𝑡) of
verification of (𝑒,𝑡)’s composite measure, thereby limiting verification costs, and (iii) do
not change the incentives of other agents to imitate (𝑒,𝑡), since any agent imitating (𝑒,𝑡)
will be accepted with probability (1−𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) (if she has a lower composite measure
than (𝑒,𝑡)) or Π(𝑒,𝑡) (if her composite measure is at least as high as (𝑒,𝑡)’s), and neither
(1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) nor Π(𝑒,𝑡) has changed.

13Strictly put, 𝑃𝑎𝑡(𝑒,𝑡) can be lower than 1 for a zero-measure set of (𝑒,𝑡) with 𝑇 (𝑒,𝑡) > 0. For (𝑒,𝑡)
with 𝑇 (𝑒,𝑡) = 0, the value of 𝑃𝑎𝑡(𝑒,𝑡) does not matter, so we can again set 𝑃𝑎𝑡(𝑒,𝑡) = 1 without loss.
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3.2 Incentive-compatible mechanisms

Given what we have seen, we constrain attention to truthful mechanisms that are deter-
ministic after verification. Let 𝜏(𝑒,𝑠) be implicitly given by 𝜎(𝑒,𝜏(𝑒,𝑠)) = 𝑠. 𝜏(𝑒,𝑠) gives
the level of talent that an agent with evidence 𝑒 should have to achieve composite measure
(exactly) 𝑠. 𝜏(𝑒,𝑠) is well-defined for (𝑒,𝑠) such that 𝑠 ∈ [0,1] and 𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)], where
𝑒(𝑠) := min{𝑒 ∈ [0,1] : 𝜎(𝑒,1) ≥ 𝑠} and 𝑒(𝑠) := max{𝑒 ∈ [0,1] : 𝜎(𝑒,0) ≤ 𝑠}.14 Proposition
1 characterizes IC mechanisms.

Proposition 1. A mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩ is IC if and only if

(i) Π(𝑒,𝑡) is non-decreasing in 𝑡 for every 𝑒 ∈ [0,1],

(ii) Π(𝑒, 𝜏(𝑒,𝑠)) is non-decreasing in 𝑒 over 𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)] for every 𝑠 ∈ [0,1], and

(iii) (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) ≤ Π(𝑒,0) for every (𝑒,𝑡) ∈ [0,1]2,

where Π(𝑒,𝑡) ≡ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) + 𝑇 (𝑒,𝑡) is the probability with which agent (𝑒,𝑡) is
accepted if she truthfully reports her type.

Figure 1 schematically summarizes IC conditions (i) and (ii) of Proposition 1.
Condition (i) is necessary and sufficient to ensure that an agent (𝑒,𝑡) does not want to

reveal her evidence but under-report her talent to imitate agent (𝑒,𝑡′) with 𝑡′ < 𝑡, meet
(𝑒,𝑡′)’s composite measure threshold in case of verification (since the composite measure is
increasing in talent), and get accepted with probability Π(𝑒,𝑡′).

Condition (iii) is necessary and sufficient to ensure that an untalented agent (𝑒,0) does
not want to over-report her talent, imitating an agent (𝑒,𝑡)—whose composite measure is
higher—and possibly getting accepted without verification. Put differently, among agents
with the same level of evidence 𝑒, in order to accept talented agents more frequently
(than the untalented agent (𝑒,0)), the principal needs to verify the talented agents’
composite measure with high enough probability to prevent agent (𝑒,0) from imitating them.
Conditions (i) and (iii) combined also imply that Π(𝑒,𝑡) ≥ Π(𝑒,0) ≥ (1 − 𝑇 (𝑒,𝑡′))𝑃 (𝑒,𝑡′,∅)
for every 𝑒,𝑡,𝑡′, so no agent (𝑒,𝑡) wants to present all her evidence but overstate her talent
to be 𝑡′ > 𝑡 and get accepted with probability (1 − 𝑇 (𝑒,𝑡′))𝑃 (𝑒,𝑡′,∅) instead of Π(𝑒,𝑡).

Last, condition (ii) is necessary and sufficient to ensure that agents do not want to
withhold some of their evidence in order to overstate their talent, thereby imitating agents
whose composite measure they can achieve. Namely, an agent (𝑒,𝑡) does not want to
imitate an agent (𝑒′,𝑡′) with less evidence 𝑒′ < 𝑒, more talent 𝑡′ > 𝑡, and equal composite
measure 𝜎(𝑒′,𝑡′) = 𝜎(𝑒,𝑡) to get accepted with probability Π(𝑒′,𝑡′) instead of Π(𝑒,𝑡). Notice

14𝑒(𝑠) (resp. 𝑒(𝑠)) is the minimum (resp. maximum) level of evidence that an agent can have while
achieving composite measure (exactly) 𝑠. That is, agents with evidence lower than 𝑒(𝑠) score less than 𝑠
even if they have talent 𝑡 = 1. Analogously, agents with evidence higher than 𝑒(𝑠) score more than 𝑠 even
if they have talent 𝑡 = 0.
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Figure 1: Directions of (weak) increase in Π(𝑒,𝑡) in IC mechanisms

0 1

1

𝐼𝜎(𝑠)

𝑒

𝑡

Note: the arrowed lines show the directions in which Π(𝑒,𝑡) is non-decreasing in IC mechanisms.

that for any possible level of evidence 𝑒′ < 𝑒 that agent (𝑒,𝑡) may present, if it is not
profitable for (𝑒,𝑡) to overstate her talent so much that she will fail to meet the composite
measure threshold in case of verification, then because of condition (i), she will want to
overstate her talent as much as possible, making sure that she will be able to meet the
composite measure threshold), up to the point where 𝜎(𝑒′,𝑡′) = 𝜎(𝑒,𝑡).

We have so far seen that conditions (i), (ii), and (iii) are necessary and sufficient
for the agent not to have incentives to misreport her type in any of the following three
ways: (a) present all her evidence but under-report her talent, (b) present all her evidence
but overstate her talent, or (c) withhold some of her evidence and overstate her talent,
imitating agents whose composite measure she can achieve. To see why they are necessary
and sufficient for IC, it remains to observe that these conditions also rule out the fourth
kind of misreport by the agent: withholding evidence and overstating talent to imitate
agents whose composite measure she cannot achieve. To see this, notice that conditions
(i), (ii), and (iii) combined imply that Π(𝑒,𝑡) ≥ Π(𝑒,0) ≥ Π(𝑒′,0) ≥ (1 − 𝑇 (𝑒′,𝑡′))𝑃 (𝑒′,𝑡′,∅)
for every 𝑒,𝑒′,𝑡,𝑡′ with 𝑒′ < 𝑒, where the second inequality follows from conditions (i) and
(ii) combined, ensuring that (𝑒,𝑡) does not want to withhold evidence and overstate her
talent so much (to a point where 𝜎(𝑒′,𝑡′) > 𝜎(𝑒,𝑡)) that she cannot meet the composite
measure threshold in case of verification.

Condition (iii) of Proposition 1 is satisfied with equality. Lemma 2 shows that
when verification is costly and some talented agents are (optimally) accepted with higher
probability than untalented ones with the same level of evidence, the optimal mechanism
satisfies condition (iii) of Proposition 1 with equality. Under free verification or when it
is not optimal to accept talented agents with higher probability, it is still without loss
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to constrain attention to mechanisms that satisfy condition (iii) of Proposition 1 with
equality.

Lemma 2. Given any IC mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩, there exists an IC mechanism 𝑀 ′ ≡
⟨𝑇 ′,𝑃 ′⟩ with (1 − 𝑇 ′(𝑒,𝑡))𝑃 ′(𝑒,𝑡,∅) = Π′(𝑒,0) for every (𝑒,𝑡) that is outcome-equivalent to
𝑀 and has at most as high verification costs as 𝑀 . For 𝑐 > 0, if also Π(𝑒,𝑡) > Π(𝑒,0) for
a positive measure of agent types, then 𝑀 ′ has lower verification costs than 𝑀 .

Here is the intuition behind this result. Take any IC mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩. When
Π(𝑒,0) > (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) for some 𝑡 > 0 and 𝑒, it means that untalented agent
(𝑒,0) strictly prefers to not overstate her talent to be 𝑡. This strict preference is due
to over-verification of the talented agent (𝑒,𝑡)’s composite measure. We can decrease
𝑇 (𝑒,𝑡) and increase 𝑃 (𝑒,𝑡,∅) keeping Π(𝑒,𝑡) ≡ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) + 𝑇 (𝑒,𝑡) fixed while
maintaining (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) ≤ Π(𝑒,0), so that condition (iii) of Proposition 1 is still
satisfied.15 Conditions (i) and (ii) of Proposition 1 are also still satisfied since Π has not
changed. Then, (𝑒,𝑡)’s composite measure is verified with lower but still high enough
probability to prevent (𝑒,0) from imitating (𝑒,𝑡).

From now on, we constrain attentions to mechanisms with (1−𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) = Π(𝑒,0),
or equivalently, Π(𝑒,𝑡) = Π(𝑒,0) + 𝑇 (𝑒,𝑡), for every (𝑒,𝑡). In an IC mechanism without
excessive verification, the total probability of acceptance has two components: (i) a base
probability Π(𝑒,0) of accepting the agent for her evidence without verification and (ii)
an additional probability 𝑇 (𝑒,𝑡) of accepting the agent for her talent, which through
verification allows her to differentiate herself from less talented agents with the same level
of evidence.

3.3 Optimal screening under free verification

We are now ready to characterize the optimal mechanisms under free verification (i.e.,
𝑐 = 0). The principal’s objective function is

∫︀ 1
0

∫︀ 1
0 Π(𝑒,𝑡)𝑢(𝑒,𝑡)𝑓(𝑒,𝑡)𝑑𝑡𝑑𝑒, which can be

written as
∫︁ 1

0

∫︁ 𝑒(𝑠)

𝑒(𝑠)
Π(𝑒,𝜏(𝑒,𝑠))𝑢(𝑒,𝜏(𝑒,𝑠))𝑓(𝑒,𝜏(𝑒,𝑠))𝑑𝑒𝑑𝑠, (2)

where instead of integrating over 𝑒 and 𝑡, we integrate over 𝑒 and the composite measure
𝑠. The principal’s problem amounts to choosing Π(𝑒, 𝜏(𝑒,𝑠)), seen as a function of (𝑒,𝑠),
non-decreasing in 𝑠 (condition (i) of Proposition 1) and 𝑒 (condition (ii) of Proposition 1)

15Notice that because 𝑀 is IC, condition (i) of Proposition 1 implies that Π(𝑒,𝑡) ≡ (1−𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅)+
𝑇 (𝑒,𝑡) ≥ Π(𝑒,0), which combined with Π(𝑒,0) > (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) implies that 𝑇 (𝑒,𝑡) > 0 to start with,
so we can decrease 𝑇 (𝑒,𝑡). Also, if 𝑃 (𝑒,𝑡,∅) = 1 to start with, then we keep 𝑃 (𝑒,𝑡,∅) fixed as we decrease
𝑇 (𝑒,𝑡). Notice also that by decreasing 𝑇 (𝑒,𝑡) and increasing (or keeping fixed, if equal to 1) 𝑃 (𝑒,𝑡,∅)
while keeping Π(𝑒,𝑡) fixed, we increase (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅). This is feasible to do while maintaining
(1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) ≤ Π(𝑒,0) because Π(𝑒,0) > (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) to start with.
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to maximize (2), which is linear (and thus convex) in Π.16 Bauer’s maximum principle
then implies that there exists an extreme Π (i.e., an extreme point of the space of non-
decreasing functions from {(𝑒,𝑠) ∈ [0,1]2 : 𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)]} to [0,1]) that maximizes (2). It
is a standard result that an extreme Π maps each (𝑒,𝑠) to either 0 or 1.

Lemma 3. Let 𝑐 = 0. There exists an optimal deterministic mechanism (i.e., an optimal
mechanism where Π(𝑒,𝑡) ∈ {0,1} for all (𝑒,𝑡)).

3.3.1 Composite measure biased in favor of talent

We are now ready to derive the optimal mechanism. Consider first the case where the
composite measure is biased in favor of talent in the sense that it is more sensitive to
talent than talent is valuable to the principal.17

Definition 3. 𝜎 is pro-𝑡 biased if for every composite measure 𝑠 ∈ [0,1] there exists 𝑒𝑠

such that for every (𝑒,𝑡), if 𝑒 > 𝑒𝑠 (resp. 𝑒 < 𝑒𝑠) and 𝜎(𝑒,𝑡) = 𝑠, then 𝑢(𝑒,𝑡) > 𝑐 (resp.
𝑢(𝑒,𝑡) < 𝑐).

This is a single-crossing condition. It says that iso-composite-measure curves cross the
principal’s indifference curve 𝐼𝑢(𝑐) “from below” (see Figure 3(a)). Here is the intuition
behind the definition. Because the composite measure is overly sensitive to talent, it is
too generous towards those with high talent and low evidence and too strict towards those
with low talent and high evidence. Therefore, among all agents with the same composite
measure, the principal’s payoff from accepting the agent is higher (resp. lower) than the
verification cost for agents with high (resp. low) evidence.

Clearly, if the principal’s payoff from accepting the agent is increasing along iso-
composite-measure curves, 𝜎 is pro-𝑡 biased. This is the case if the principal’s marginal
rate of substitution (MRS) of talent for evidence is higher (in absolute value) than the
composite measure’s MRS of talent for evidence.

Claim 1. If 𝑢(𝑒,𝜏(𝑒,𝑠)) is increasing in 𝑒 over 𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)] for every 𝑠 ∈ [0,1], then 𝜎 is
pro-𝑡 biased (for any 𝑐). The condition is satisfied if 𝜕𝑢(𝑒,𝑡)/𝜕𝑒

𝜕𝑢(𝑒,𝑡)/𝜕𝑡
> 𝜕𝜎(𝑒,𝑡)/𝜕𝑒

𝜕𝜎(𝑒,𝑡)/𝜕𝑡
for every (𝑒,𝑡).

First, notice that if the principal only values evidence, 𝜎 is automatically pro-𝑡 biased.
Then, he can trivially achieve the first best without the need for verification—much like
in the case where talent was absent from the model. Namely, accepting every agent with
sufficient evidence to be of positive value to the principal is IC.

16Condition (iii) of Proposition 1 is immaterial, since verification is free. As implied by Lemma 2, any
Π that satisfies conditions (i) and (ii) of Proposition 1 can be implemented with 𝑇 and 𝑃 such that
(1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) = Π(𝑒,0) for every (𝑒,𝑡). However, there are many other ways to implement any Π
that satisfies conditions (i) and (ii). For example, setting 𝑃 (𝑒,𝑡,∅) = 0 and 𝑇 (𝑒,𝑡) = Π(𝑒,𝑡) for every (𝑒,𝑡)
(i.e., nobody is ever accepted without verification) automatically satisfies condition (iii) of Proposition 1.

17We define a pro-𝑡 biased composite measure for any verification cost 𝑐. The optimal mechanism under
costly verification is studied in section 3.4.
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Allowing for the principal to also value talent, Proposition 2 shows that when verifica-
tion is (i) free and (ii) the composite measure pro-𝑡 biased, the principal can still achieve
the full information benchmark.

Proposition 2. Let 𝑐 = 0, and assume that 𝜎 is pro-𝑡 biased. Then, Π(𝑒,𝑡) = I (𝑢(𝑒,𝑡) ≥ 0)
is IC, so the principal achieves the full information first-best.

Assume the principal tries to achieve the first-best without worrying about the possibil-
ity that agents may withhold evidence to manipulate the interpretation of the composite
measure. Proposition 2 says that if the principal values talent but less strongly than the
composite measure depends on talent, agents do not have incentives to withhold evidence,
and so the principal was correct to assume that all agents will present their evidence. To
achieve the first-best, the principal needs to both ask for evidence and verify the composite
measure: Because there exist 𝑒,𝑡,𝑡′ with 𝑡′ > 𝑡 such that 𝑢(𝑒,𝑡′) > 0 > 𝑢(𝑒,𝑡), he needs to
use verification to accept (𝑒,𝑡′) but not (𝑒,𝑡). Figure 3(a) presents the optimal mechanism
when verification is free and the composite measure is pro-𝑡 biased.18

3.3.2 Composite measure biased in favor of evidence

Consider now the case where the composite measure is biased in favor of evidence in the
sense that the composite measure is more sensitive to evidence than evidence is valuable
to the principal—or equivalently, the composite measure is less sensitive to talent than
talent is valuable to the principal.19

Definition 4. 𝜎 is pro-𝑒 biased if for every composite measure 𝑠 ∈ [0,1] there exists 𝑒𝑠

such that for every (𝑒,𝑡), if 𝑒 < 𝑒𝑠 (resp. 𝑒 > 𝑒𝑠) and 𝜎(𝑒,𝑡) = 𝑠, then 𝑢(𝑒,𝑡) > 𝑐 (resp.
𝑢(𝑒,𝑡) < 𝑐).

This is again a single-crossing condition. It says that iso-composite-measure curves
cross the principal’s indifference curve 𝐼𝑢(𝑐) “from above” (see Figure 3(b)). Claim 2 is
analogous to Claim 1.

Claim 2. If 𝑢(𝑒,𝜏(𝑒,𝑠)) is decreasing in 𝑒 over 𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)] for every 𝑠 ∈ [0,1], then 𝜎 is
pro-𝑒 biased (for any 𝑐). The condition is satisfied if 𝜕𝑢(𝑒,𝑡)/𝜕𝑒

𝜕𝑢(𝑒,𝑡)/𝜕𝑡
< 𝜕𝜎(𝑒,𝑡)/𝜕𝑒

𝜕𝜎(𝑒,𝑡)/𝜕𝑡
for every (𝑒,𝑡).

18Lemma 2 restricts attention to the following way of implementing the first-best Π: setting 𝑇 (𝑒,𝑡) =
I(𝑢(𝑒,𝑡) ≥ 0 ∧ 𝑢(𝑒,0) < 0) and 𝑃 (𝑒,𝑡,∅) = I(𝑢(𝑒,0) ≥ 0). That is, agents who are not valuable to the
principal truthfully report their type and are rejected without verification. Agents who are valuable but
cannot prove it by presenting evidence 𝑒 such that 𝑢(𝑒,0) > 0 (which would prove that even if they have
𝑡 = 0, they are valuable) are accepted after verification. Finally, agents who can prove they are valuable
by presenting evidence 𝑒 such that 𝑢(𝑒,0) ≥ 0 do so and are accepted without verification. Clearly, since
verification is free, 𝑇 (𝑒,𝑡) = I(𝑢(𝑒,𝑡) ≥ 0) and 𝑃 (𝑒,𝑡,∅) = 0 for every (𝑒,𝑡) is, for example, also optimal, as
is always verifying and accepting only the valuable agents.

19We define pro-𝑒 biased composite measures for any verification cost 𝑐. The optimal mechanism under
costly verification is studied in section 3.4.
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Figure 2: Not achieving the first-best: composite measure biased in favor of evidence

(a) Only talent valuable to the principal

0 1

1

𝐼𝜎(𝑠)

𝐼𝑢(0)

𝑒

𝑡

(b) Test less sensitive to talent than talent valuable
to the principal

0 1

1

𝐼𝜎(𝑠)𝐼𝑢(0)

𝑒

𝑡

Note: the arrowed lines represent the directions of (weak) increase in Π(𝑒,𝑡) in any IC mechanism.
The dashed lines represent the principal’s indifference curve 𝐼𝑢(0).

The first-best is no longer achievable.20 Indeed, Figure 2 shows that accepting (almost)
every agent with 𝑢(𝑒,𝑡) > 0 and rejecting (almost) every agent with 𝑢(𝑒,𝑡) < 0 is not IC,
as it creates incentives for agents with 𝑢(𝑒,𝑡) < 0 to withhold evidence to imitate more
talented agents.

But what can actually be achieved when the composite measure is less sensitive
to talent than talent is valuable to the principal? Proposition 3 describes the optimal
mechanism when verification is free and the composite measure is pro-𝑒 biased. In the
optimal mechanism, agent (𝑒,𝑡) is accepted if and only if 𝜎(𝑒,𝑡) ≥ 𝑠*.21

Proposition 3. Let 𝑐 = 0, and assume that 𝜎 is pro-𝑒 biased. Then, there exists an
optimal mechanism with Π(𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠*).

Finding the optimal mechanism is remarkably simple. It amounts to maximizing
a continuous function of one variable over a closed interval. The principal needs to
find 𝑠* ∈ arg max̃︀𝑠∈[0,1]

∫︀ 1̃︀𝑠 ∫︀ 𝑒(𝑠)
𝑒(𝑠) ̃︀𝑢(𝑒,𝑠) ̃︀𝑓(𝑒,𝑠)𝑑𝑒𝑑𝑠, where ̃︀𝑢(𝑒,𝑠) := 𝑢(𝑒,𝜏(𝑒,𝑠)) and ̃︀𝑓(𝑒,𝑠) :=

20𝜎 being pro-𝑒 biased is not necessary for this conclusion. The conclusion still applies as long as the
condition in definition 4 is satisfied for a positive measure of 𝑠 ∈ [0,1].

21Lemma 2 restricts attention to the following way of implementing this Π: setting 𝑇 (𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥
𝑠* ∧ 𝑒 ≤ 𝑒(𝑠*)) and 𝑃 (𝑒,𝑡,∅) = I(𝑒 > 𝑒(𝑠*)). That is, agents who cannot achieve composite measure at
least 𝑠* truthfully report their type and are rejected without verification. Agents who can achieve that
composite measure and cannot prove this by presenting evidence 𝑒 > 𝑒(𝑠*) (which would prove that even
if they have 𝑡 = 0, they can achieve composite measure 𝑠*) are accepted after verification. Finally, agents
who can prove that they can meet the composite measure threshold by presenting evidence 𝑒 ≥ 𝑒(𝑠*) do
so and are accepted without verification. Clearly, since verification is free, 𝑇 (𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠*) and
𝑃 (𝑒,𝑡,∅) = 0 for every (𝑒,𝑡) is, for example, also optimal, as is always verifying the composite measure
and accepting only the agents that pass the composite measure threshold 𝑠*.
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𝑓(𝑒,𝜏(𝑒,𝑠)).22 When 𝑠* ∈ (0,1), it solves
∫︀ 𝑒(𝑠*)

𝑒(𝑠*) 𝑢(𝑒,𝜏(𝑒,𝑠*))𝑓(𝑒,𝜏(𝑒,𝑠*))𝑑𝑒 = 0. The
principal effectively chooses a threshold composite measure 𝑠* and accepts every agent
who can achieve this score. In choosing this threshold, he balances the Type I (i.e.,
rejecting agents who lie above 𝐼𝑢(0)) and Type II (i.e., accepting agents who lie below
𝐼𝑢(0)) errors. This trade-off can be seen in Figure 3(b).

Here is a sketch of the proof of Proposition 3. Because 𝜎 is pro-𝑒 biased, for any
two types of zero value to the principal (𝑒,𝑡),(𝑒′,𝑡′) ∈ 𝐼𝑢(0) with 𝑒′ > 𝑒, 𝜎(𝑒′,𝑡′) ≥ 𝜎(𝑒,𝑡).
But then, if 𝜎(𝑒′,𝑡′) ≥ 𝜎(𝑒,𝑡) and 𝑒′ > 𝑒, IC requires Π(𝑒′,𝑡′) ≥ Π(𝑒,𝑡). In other words,
Π(𝑒,𝑡) has to be non-decreasing as 𝑒 increases along the 𝐼𝑢(0) curve. Therefore, in any
deterministic IC mechanism, there exists a threshold type on the 𝐼𝑢(0) curve such that
agents on the 𝐼𝑢(0) curve with more (resp. less) evidence than the threshold type are
accepted (resp. rejected). Next, notice that IC requires that Π(𝑒,𝑡) be non-decreasing
along iso-composite-measure curves (condition (ii) of Proposition 1). Thus, having fixed
Π(𝑒,𝑡) along the 𝐼𝑢(0) curve, keeping Π(𝑒,𝑡) constant along iso-composite-measure curves
maximizes the principal’s payoff. That is because, on the part of an iso-composite-measure
curve that lies below (resp. above) 𝐼𝑢(0), the principal wants to make Π(𝑒,𝑡) as low (resp.
high) as possible but is constrained to set Π(𝑒,𝑡) at least (resp. most) equal to its value
on the curve 𝐼𝑢(0) for that specific composite measure level. Condition (i) of Proposition
1 is automatically satisfied.

Discussion. When seen against the results under a pro-𝑡 biased composite measure (see
Proposition 2), Proposition 3 reveals a stark contrast in the difficulty of hiring different
types of employees. When skills and knowledge that can be proven through hard evidence
are most valuable, the hiring process is easy. On the other hand, when talent is most
valuable and assessed through a composite measure (e.g., interview or test performance)
that is overly sensitive to the candidate’s training and preparation, the hiring process is
flawed. It favors unworthy candidates with advanced training at the expense of those
with limited training who are, however, more valuable to the firm.

3.4 Optimal screening under costly verification

When verification is costly, the principal needs to compare the benefit of verification
to its cost. The benefit of verification is increased accuracy: It allows the principal to
accept talented agents with higher probability that untalented ones. The principal’s
objective function is

∫︀ 1
0

∫︀ 1
0 [Π(𝑒,𝑡)𝑢(𝑒,𝑡) − 𝑐𝑇 (𝑒,𝑡)] 𝑓(𝑒,𝑡)𝑑𝑡𝑑𝑒. By Lemma 2, condition (iii)

of Proposition 1 is satisfied with equality by the optimal mechanism, so in the objective
function we can substitute 𝑇 (𝑒,𝑡) = Π(𝑒,𝑡) − Π(𝑒,0) to write the objective function only

22The principal’s problem reduces to this because all mechanisms with Π(𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠*) and
appropriate 𝑇 are IC.
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Figure 3: Optimal bidimensional screening with substitutable attributes

(a) Pro-𝑡 biased 𝜎 & 𝑐 = 0
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(b) Pro-𝑒 biased 𝜎 & 𝑐 = 0
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(c) Pro-𝑡 biased 𝜎 & 𝑐 > 0
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(d) Pro-𝑒 biased 𝜎 & 𝑐 > 0
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verification
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without
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verification
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Note: the dashed line 𝐼𝑢(𝑐) represents the principal’s indifference curve at utility level 𝑐:
the principal is indifferent between (i) accepting after verification and (ii) rejecting without
verification agents on that curve. The dashed line 𝐼𝑢(0) represents the principal’s indifference
curve at utility level 0. The arrowed line represents an iso-composite-measure curve, at an
arbitrary level 𝑠 in panels (a) and (c), and at the optimal level 𝑠* in panel (b) and (d). The
green area denotes the set of agents who are accepted without verification. The yellow area
denotes the set of agents who are accepted after verification. The red area denotes the set of
agents who are rejected without verification. Although 𝑠* is used in both panels (b) and (d), 𝑠*

in panel (b) can be different from 𝑠* in panel (d). In panel (d), 𝐼𝑢(0) can intersect the vertical
line at 𝑒* above or below the point where 𝐼𝜎(𝑠*) intersects the vertical line at 𝑒*.
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in terms of Π as follows:
∫︁ 1

0

∫︁ 𝑒(𝑠)

𝑒(𝑠)
[Π(𝑒,𝜏(𝑒,𝑠))(𝑢(𝑒,𝜏(𝑒,𝑠)) − 𝑐) + 𝑐Π(𝑒,0)] 𝑓(𝑒,𝜏(𝑒,𝑠))𝑑𝑒𝑑𝑠, (3)

which is linear in Π, so by Bauer’s maximum principle, there exists an extreme Π—among
all Π that are non-decreasing in 𝑠 and 𝑒—that solves the principal’s problem.

Lemma 4. There exists an optimal deterministic mechanism.

3.4.1 Composite measure biased in favor of talent

Proposition 4 characterizes the optimal mechanism under a pro-𝑡 biased composite measure,
generalizing Proposition 2 by allowing for possibly costly verification (i.e., 𝑐 ≥ 0).

Proposition 4. If 𝜎 is pro-𝑡 biased, then there exists an optimal mechanism with
Π(𝑒,𝑡) = I(𝑢(𝑒,𝑡) ≥ 𝑐 or 𝑒 ≥ 𝑒*) and 𝑇 (𝑒,𝑡) = I(𝑢(𝑒,𝑡) ≥ 𝑐 and 𝑒 < 𝑒*) for some 𝑒* ∈ [0,1].

The principal’s problem amounts to choosing a threshold level of evidence 𝑒* ∈
arg max̃︀𝑒∈[0,1] 𝑣(̃︀𝑒),23 where

𝑣(̃︀𝑒) :=
∫︁ 1

0

∫︁ ̃︀𝑒
0

(𝑢(𝑒,𝑡) − 𝑐)I(𝑢(𝑒,𝑡) ≥ 𝑐)𝑓(𝑒,𝑡)𝑑𝑒𝑑𝑡⏟  ⏞  
payoff from agents accepted after verification

net of verification costs

+
∫︁ 1

0

∫︁ 1

̃︀𝑒 𝑢(𝑒,𝑡)𝑓(𝑒,𝑡)𝑑𝑒𝑑𝑡⏟  ⏞  
payoff from agents

accepted without verification

.

Every agent with evidence 𝑒 ≥ 𝑒* evidence is accepted without verification, while agents
with evidence 𝑒 < 𝑒* are accepted after verification if their value 𝑢(𝑒,𝑡) to the principal
is higher than the cost 𝑐 of verification. The remaining agents are rejected without
verification. Figure 3(c) presents the structure of the optimal mechanism.

When 𝑒* ∈ (0,1), the first-order condition is

𝑣′(𝑒*) =
∫︁ 1

0
(𝑢(𝑒*,𝑡) − 𝑐)I(𝑢(𝑒*,𝑡) ≥ 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡 −

∫︁ 1

0
𝑢(𝑒*,𝑡)𝑓(𝑒*,𝑡)𝑑𝑡 =0,

or equivalently

𝑣′(𝑒*) =

>0: gain from decrease in Type II error (ii)⏞  ⏟  
−

∫︁ 1

0
𝑢(𝑒*,𝑡)I(𝑢(𝑒*,𝑡) ≤ 0)𝑓(𝑒*,𝑡)𝑑𝑡 −

>0: loss from increase in Type I error (iii)⏞  ⏟  ∫︁ 1

0
𝑢(𝑒*,𝑡)I(0 < 𝑢(𝑒*,𝑡) < 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡

− 𝑐
∫︁ 1

0
I(𝑢(𝑒*,𝑡) ≥ 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡⏟  ⏞  

>0: loss from increase in verification costs (i)

= 0.

An increase in the threshold 𝑒* would lead to: (i) increased verification costs by making
additional agents who lie above 𝐼𝑢(𝑐) get accepted after verification (who were accepted

23The principal’s problem reduces to this because all mechanisms with Π(𝑒,𝑡) = I(𝑢(𝑒,𝑡) ≥ 𝑐 or 𝑒 ≥ 𝑒*)
and 𝑇 (𝑒,𝑡) = I(𝑢(𝑒,𝑡) ≥ 𝑐 and 𝑒 < 𝑒*) for some 𝑒* ∈ [0,1] are IC.
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without verification before the increase in 𝑒*), (ii) a decrease in the Type II error, but also
(iii) an increase in the Type I error. Channels (i) and (iii) negatively affect the principal’s
payoff, while channel (ii) tends to increase his payoff. In choosing the optimal threshold
𝑒*, the principal trades off verification costs (i.e., effect (i)) with accuracy (i.e., the net
effect of (ii) and (iii)).

Comparative statics. We now briefly discuss some comparative statics. For simplicity,
assume that 𝑒* ∈ (0,1) is unique with the second-order condition of the principal’s problem
satisfied strictly and that verification is used for a positive measure of agents.24 First,
an increase in 𝑐 causes the (combined) magnitude of channels (i) and (iii) to increase
without affecting the magnitude of channel (ii).25 Thus, 𝑒* is decreasing in 𝑐; the more
costly verification is, the more high-evidence agents are accepted without verification.
Particularly, 𝑣′(𝑒) is decreasing in 𝑐 with 𝜕𝑣′(𝑒)/𝜕𝑐 = −

∫︀ 1
0 I(𝑢(𝑒*,𝑡) ≥ 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡 < 0,

and by the Implicit Function Theorem 𝑑𝑒*/𝑑𝑐 = −𝜕𝑣′(𝑒)/𝜕𝑐|𝑒=𝑒*/𝑣′′(𝑒*) < 0. Second, the
principal’s optimal payoff is decreasing in 𝑐. Third, since the principal’s objective function
is independent of 𝜎, the optimal mechanism and payoff are the same under any two pro-𝑡
biased composite measures with the same cost 𝑐.

3.4.2 Composite measure biased in favor of evidence

Proposition 5 characterizes the optimal mechanism under a pro-𝑒 biased composite measure,
generalizing Proposition 3 by allowing for possibly costly verification (i.e., 𝑐 ≥ 0).

Proposition 5. If 𝜎 is pro-𝑒 biased, then there exists an optimal mechanism with
Π(𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠* or 𝑒 ≥ 𝑒*) and 𝑇 (𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠* and 𝑒 < 𝑒*) for some
(𝑒*,𝑠*) ∈ [0,1]2.

The principal’s problem amounts to choosing threshold evidence and composite measure
levels (𝑒*,𝑠*) ∈ arg max(̃︀𝑒,̃︀𝑠)∈[0,1]2 𝑣(̃︀𝑒,̃︀𝑠), where

𝑣(̃︀𝑒,̃︀𝑠) :=
∫︁ 1

̃︀𝑠
∫︁ max{min{𝑒(𝑠),̃︀𝑒},𝑒(𝑠)}

𝑒(𝑠)
(̃︀𝑢(𝑒,𝑠) − 𝑐) ̃︀𝑓(𝑒,𝑠)𝑑𝑒𝑑𝑠⏟  ⏞  

payoff from agents accepted after verification
net of verification costs

+
∫︁ 1

0

∫︁ max{𝑒(𝑠),̃︀𝑒}

max{𝑒(𝑠),̃︀𝑒}
̃︀𝑢(𝑒,𝑠) ̃︀𝑓(𝑒,𝑠)𝑑𝑒𝑑𝑠⏟  ⏞  

payoff from agents
accepted without verification

,

and ̃︀𝑢(𝑒,𝑠) ≡ 𝑢(𝑒,𝜏(𝑒,𝑠)) and ̃︀𝑓(𝑒,𝑠) ≡ 𝑓(𝑒,𝜏(𝑒,𝑠)).26 Every agent with evidence 𝑒 ≥ 𝑒*

24Namely, 𝑢(𝑒,𝑡) > 𝑐 for a positive measure of agents with 𝑒 < 𝑒*. This rules out the case 𝑢(𝑒,𝑡) = 𝑒 − 𝑞,
where the principal only cares about evidence, in which case he does not use verification.

25In more detail, the partial derivative of −𝑐
∫︀ 1

0 I(𝑢(𝑒*,𝑡) ≥ 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡 with respect to 𝑐 is
−

∫︀ 1
0 I(𝑢(𝑒*,𝑡) ≥ 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡 + 𝑐𝑓(𝑒*,𝑡′) where 𝑡′ is such that 𝑢(𝑒*,𝑡′) = 𝑐. The partial derivative of∫︀ 1

0 𝑢(𝑒*,𝑡)I(0 < 𝑢(𝑒*,𝑡) < 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡 with respect to 𝑐 is 𝑢(𝑒*,𝑡′)𝑓(𝑒*,𝑡′) = 𝑐𝑓(𝑒*,𝑡′) > 0, which cancels
out with the corresponding term in the derivative of −𝑐

∫︀ 1
0 I(𝑢(𝑒*,𝑡) ≥ 𝑐)𝑓(𝑒*,𝑡)𝑑𝑡.

26The principal’s problem reduces to this because all mechanisms with Π(𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠* or 𝑒 ≥ 𝑒*)
and 𝑇 (𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠* and 𝑒 < 𝑒*) for some (𝑒*,𝑠*) ∈ [0,1]2 are IC.
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is accepted without verification, while agents with evidence 𝑒 < 𝑒* are accepted after
verification if their composite measure is at least 𝜎(𝑒,𝑡) ≥ 𝑠*. The remaining agents are
rejected without verification. Figure 3(d) presents the structure of the optimal mechanism
when the composite measure is pro-𝑒 biased.

When 𝑒(𝑠*) < 𝑒* (i.e., some agents are accepted after verification) and 𝑒*,𝑠* ∈ (0,1),27

the first-order conditions are

𝑣1(𝑒*,𝑠*) =

>0: net gain from decrease in Type II error (A+B)⏞  ⏟  
>0: gain from rejection of unworthy agents (ii)⏞  ⏟  

−
∫︁ 𝑠*

0
̃︀𝑢(𝑒*,𝑠)I(̃︀𝑢(𝑒*,𝑠) ≤ 0) ̃︀𝑓(𝑒*,𝑠)𝑑𝑠 −

>0: loss from rejection of worthy agents (iii)⏞  ⏟  ∫︁ 𝑠*

0
̃︀𝑢(𝑒*,𝑠)I(̃︀𝑢(𝑒*,𝑠) > 0) ̃︀𝑓(𝑒*,𝑠)𝑑𝑠

− 𝑐
∫︁ 1

𝑠*

̃︀𝑓(𝑒*,𝑠)𝑑𝑠⏟  ⏞  
>0: loss from increase
in verification costs (i)

= 0

𝑣2(𝑒*,𝑠*) = −
∫︁ 𝑒*

𝑒(𝑠*)
min{̃︀𝑢(𝑒,𝑠*) − 𝑐,0} ̃︀𝑓(𝑒,𝑠*)𝑑𝑒⏟  ⏞  

>0: gain from decrease in Type II error A

−
∫︁ 𝑒*

𝑒(𝑠*)
max{̃︀𝑢(𝑒,𝑠*) − 𝑐,0} ̃︀𝑓(𝑒,𝑠*)𝑑𝑒⏟  ⏞  

>0: loss from increase in Type I error

= 0.

The principal chooses 𝑠* considering the trade-off between the Type I error and the Type
II error A. The Type I error is due to the fact that the principal rejects without verification
some agents whom he would prefer to accept after verification. The Type II error A is due
to the fact that the principal accepts after verification some agents whom he would prefer
to reject without verification. An increase in the threshold 𝑒* would lead to: (i) increased
verification costs by making additional agents who lie above 𝐼𝜎(𝑠*) are accepted after
verification (who were accepted without verification before the increase in 𝑒*), (ii) the
rejection without verification of additional agents who lie below 𝐼𝑢(0) (who were accepted
without verification before the increase in 𝑒*), but also possibly (iii) the rejection without
verification of additional agents who lie below 𝐼𝜎(𝑠*) but above 𝐼𝑢(0) (who were accepted
without verification before the increase in 𝑒*).28 Channels (i) and (iii) negatively affect the
principal’s payoff, while channel (ii) tends to increase his payoff. In choosing the optimal
threshold 𝑒*, the principal trades off verification costs (i.e., effect (i)) with accuracy (i.e.,
the net effect of (ii) and (iii)).

Comparative statics. We now briefly discuss some comparative statics. For simplicity,
assume that 𝑠*,𝑒* ∈ (0,1) are unique with the second-order condition of the principal’s
problem satisfied strictly and that verification is used for a positive measure of agents.
Denote by 𝐽(𝑒*,𝑠*) the Jacobian matrix of the first derivatives evaluated at (𝑒*,𝑠*),
which is by assumption negative definite. Particularly, 𝑣11(𝑒*,𝑠*),𝑣22(𝑒*,𝑠*) < 0 and
det(𝐽(𝑒*,𝑠*)) > 0. Also, 𝑣12(𝑒*,𝑠*) = 𝑣21(𝑒*,𝑠*) = − (̃︀𝑢(𝑒*,𝑠*) − 𝑐) ̃︀𝑓(𝑒*,𝑠*) > 0.

27Notice that 𝑒* ≤ 𝑒(𝑠*) (for if 𝑒* > 𝑒(𝑠*) and 𝑐 > 0, reducing 𝑒* would increase 𝑣(𝑒*,𝑠*)).
28Channel (iii) is not necessarily present.
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First, the total derivatives of 𝑒*and 𝑠* with respect to 𝑐 are:

𝑑𝑒*

𝑑𝑐
∝

<0: direct effect of 𝑐 on
𝑒* due to increase in

marginal verification costs⏞  ⏟  
−𝑣1𝑐(𝑒*,𝑠*)𝑣22(𝑒*,𝑠*) +

>0: indirect effect of 𝑐
on 𝑒* through direct

effect of 𝑐 on 𝑠*⏞  ⏟  
𝑣2𝑐(𝑒*,𝑠*)𝑣12(𝑒*,𝑠*),

𝑑𝑠*

𝑑𝑐
∝ −𝑣2𝑐(𝑒*,𝑠*)𝑣11(𝑒*,𝑠*)⏟  ⏞  

>0: direct effect of 𝑐 on
𝑠* due to increase in

marginal verification costs

+ 𝑣1𝑐(𝑒*,𝑠*)𝑣21(𝑒*,𝑠*)⏟  ⏞  
<0: indirect effect of 𝑐

on 𝑠* through direct
effect of 𝑐 on 𝑒*

,

where 𝑣1𝑐(𝑒*,𝑠*) = −
∫︀ 1

𝑠*
̃︀𝑓(𝑒*,𝑠)𝑑𝑠 < 0 and 𝑣2𝑐(𝑒*,𝑠*) =

∫︀ 𝑒*

𝑒(𝑠*)
̃︀𝑓(𝑒,𝑠*)𝑑𝑒 > 0 are the partial

derivatives of 𝑣1 and 𝑣2 with respect to 𝑐. An increase in the cost 𝑐 of verification tends
to directly cause (i) 𝑒* to decrease by magnifying the verification cost savings associated
with a decrease in 𝑒* and (ii) 𝑠* to increase by magnifying the verification cost savings
associated with an increase in 𝑒*.29 However, an increase in 𝑠* tends to cause 𝑒* to increase
by (i) reducing the marginal increase in verification costs associated with an increase in 𝑒*

and (ii) increasing the marginal net decrease in the Type II errors A and B associated with
an increase in 𝑒*. Conversely, an increase in 𝑒* tends to cause 𝑠* to increase by increasing
the marginal (with respect to 𝑠*) Type II error A. Therefore, although an increase in 𝑐

tends to directly cause 𝑒* to fall and 𝑠* to rise, the interaction between 𝑒* and 𝑠* works in
the opposite direction making the net effect ambiguous.

Second, the principal’s optimal payoff is decreasing in 𝑐. Third, the optimal payoff is
higher under less pro-𝑒 biased composite measures. Namely, take any two pro-𝑒 biased
composite measures 𝜎′ and 𝜎. If all iso-composite-measure curves of 𝜎 cross the iso-
composite-measure curves of 𝜎′ from above (i.e., 𝜎 is more pro-𝑒 biased than 𝜎′), the
principal’s optimal payoff is higher under 𝜎′ than under 𝜎.30 Fourth, the principal’s
payoff is expected to increase with the correlation between evidence and talent. A strong
(positive) correlation between 𝑒 and 𝑡 means that there are not many agents with high (resp.
low) talent and low (resp. high) evidence, which implies that both Type I and Type II
errors are small. As 𝑒 and 𝑡 become perfectly (positively) correlated, the principal achieves
the first-best just by asking for evidence—regardless of his preferences and sensitivity of
the composite measure to 𝑒 or 𝑡.

Implementation of the optimal mechanism. We have so far restricted (without loss)
attention to truth-telling mechanisms. However, the optimal mechanism under a pro-𝑒
composite measure can be implemented in the following simple way. The principal gives
the agent two paths to getting accepted: (i) provide evidence 𝑒* and you will be accepted

29Put differently, an increase in 𝑐 can be seen to increase the marginal (with respect to 𝑠*) Type II
error A and decrease the marginal Type I error, thereby tending to make 𝑠* increase to equalize the
magnitudes of the two errors.

30Comparative statics of 𝑠* with respect to 𝜎 would have little value, since optimal composite measure
thresholds under different composite measures are not comparable.

23



without verification or (ii) without providing any evidence, ask the principal to verify
your composite measure, and if it is at least 𝑠*, you will be accepted. The first option is
not always provided (e.g., when verification is free). A similarly simple implementation of
the optimal mechanism under a pro-𝑡 composite measure is not possible. In that case, the
principal needs to ask for evidence also from agents whose composite measure he verifies.31

4 Applications

In this section, I use the model to discuss hiring for prestigious positions, promotion
decisions, college admissions, and academic job market hiring.

4.1 Hiring for prestigious positions

A job candidate’s evidence 𝑒 is her CV quality. 𝑡 is her ability and drive not captured by
𝑒. An employer wants to decide whether to hire the candidate for prestigious position.
Verification works as follows: The employer has the option to (i) let another employer
hire the candidate for some less prestigious position, (ii) observe her performance in that
position, and (iii) decide whether to poach her at a cost higher than the cost of hiring her
from the beginning.

In the optimal mechanism, candidates with high credentials are immediately hired for
prestigious positions. On the other hand, talented candidates with low credentials have to
go through less prestigious employers to prove their worth before landing a prestigious
position (see Figure 3(c-d)). Also, if the candidates’ performance in the less prestigious
position is less sensitive to talent than talent is valuable in the more prestigious position,
then worthy candidates with low credentials are at a disadvantage also in the poaching
stage (see Figure 3(d)).

4.2 Promotions

An employee is characterized by efficiency 𝑡 and hardworkingness 𝑒. 𝜎(𝑒,𝑡) is the employee’s
productivity in her current positions. The employee can provide or withhold evidence
on 𝑒 by, for example, choosing the hours she works at the office or from home. The
employer can verify the employee’s productivity 𝜎(𝑒,𝑡). If the agent continues to work
in her current position, the employer’s payoff is 𝜎(𝑒,𝑡). If the agent is promoted, the
employer’s payoff is 𝑣(𝑒,𝑡). The employer’s problem is equivalent to the one in section 2
with 𝑢(𝑒,𝑡) := 𝑣(𝑒,𝑡) − 𝜎(𝑒,𝑡), as long as the difference 𝑣(𝑒,𝑡) − 𝜎(𝑒,𝑡) is non-decreasing

31These observations on the implementation of optimal mechanisms also imply that under free verifica-
tion, if the principal (optimally) asks for evidence—which he does not need to do under a pro-𝑒 composite
measure, then he most likely values evidence (i.e., 𝑢(𝑒,𝑡) is increasing in 𝑒).
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in both 𝑒 and 𝑡.32 This condition has a natural interpretation: Both effort and talent
have a weakly higher marginal return in the higher position, which comes with increased
responsibilities that allow the employee’s efficiency and hardworkingness to have a larger
impact.

Under differentiability and given Claims 1 and 2, the composite measure is pro-𝑡
(resp. pro-𝑒) biased if for every (𝑒,𝑡), 𝜕𝑢(𝑒,𝑡)/𝜕𝑒/(𝜕𝑢(𝑒,𝑡)/𝜕𝑡) is higher (resp. lower) than
𝜕𝜎(𝑒,𝑡)/𝜕𝑒/(𝜕𝜎(𝑒,𝑡)/𝜕𝑡), or equivalently,

𝜕𝑣(𝑒,𝑡)/𝜕𝑒

𝜕𝑣(𝑒,𝑡)/𝜕𝑡

(resp. <)
>

𝜕𝜎(𝑒,𝑡)/𝜕𝑒

𝜕𝜎(𝑒,𝑡)/𝜕𝑡
.

This condition also has a natural interpretation: In the production function of the higher
position, the relative importance of efficiency and talent (relative to hardworkingness) is
higher than in the current position.

4.3 College admissions and standardized testing

A college applicant’s evidence 𝑒 is her prior training, preparation, and parental support. 𝑡

is her talent or drive that is not captured by 𝑒. The college wants to decide whether to
admit the applicant or not. Verification amounts to requiring the applicant to submit her
standardized test score.33

In the optimal mechanism, if the standardized test is not sensitive enough to talent,
applicants have incentives to withhold evidence, which makes admission decisions imperfect
at the expense of students with low prior training, preparation, and parental support (e.g.,
limited access to quality education, tutoring, extracurricular activities, and opportunities
to participate in competitions). Particularly, if colleges want diversity and only value
talent (trying to control for the applicants’ unequal backgrounds), the above problem is
necessarily present under standardized testing to the extent that applicants can withhold
evidence of prior training, preparation, and parental support. Students from advantaged
backgrounds have an advantage over equally good—or even better—students from more
modest backgrounds.

32𝑢(𝑒,𝑡) could also be defined as 𝑢(𝑒,𝑡) := 𝑣(𝑒,𝑡) − 𝜎(𝑒,𝑡) − 𝑞, where 𝑞 is the threshold productivity
differential for the promotion to be beneficial to the firm (e.g., 𝑞 could be the productivity differential of
another employee who could be promoted instead).

33In this setting, the college does not condition the requirement to take a test on the candidate’s report.
However, when the college requires a test score, the optimal mechanism takes the same form as in the
case of 𝑐 = 0.
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4.4 Academic job market talks

An academic job market candidate’s research topic is comprised of a “mass” 𝑏 > 1 of
(uncountably infinitely many) problems.34 𝑒 ∈ [0,1] is the candidate’s knowledge, the
mass of problems which she has found answers to. 𝑡 is her ability to think on her feet.
More concretely, it is the probability with which she finds an answer on the spot to a
problem that she has not already solved. After the candidate presents answers to a mass
𝑒′ ∈ [0,𝑒] of problems and makes a claim about 𝑡, the hiring committee may verify the
proportion of questions she can answer. Verification amounts to posing to the candidate
countably infinitely many problems randomly sampled from the mass of problems that the
candidate has not initially disclosed answers to.35 Thus, if she presents answers to mass
𝑒′ ∈ [0,𝑒] of problems, she will answer proportion 𝑝(𝑒,𝑡,𝑒′) := [𝑒 − 𝑒′ + (𝑏 − 𝑒)𝑡]/(𝑏 − 𝑒′)
of the problems posed to her. This is the sum of (i) the proportion (𝑒 − 𝑒′)/(𝑏 − 𝑒′) of
problems sampled from the set of problems that the candidate already has answers to (but
has not disclosed them) and (ii) the proportion (𝑏 − 𝑒)/(𝑏 − 𝑒′) of problems sampled from
the set of problems that the candidate does not already have answers to multiplied by
the proportion 𝑡 to which the candidate will find answers on the spot. 𝑢(𝑒,𝑡) is the hiring
committee’s surplus from hiring the candidate. Observing 𝑒′ and 𝑝(𝑒,𝑡,𝑒′) is equivalent to
observing 𝑒′ and 𝜎(𝑒,𝑡) := 𝑒 + (𝑏 − 𝑒)𝑡, so the committee’s problem is equivalent to the
problem that we have studied.

5 Extensions and robustness

This section first discusses optimal screening under alternative evidence structures. Then,
it studies two extensions of the model: (i) one where the principal has to pay a cost before
the agent reports her type in order to design the composite measure, which he can then
choose to verify at an additional cost and (ii) the case where evidence is not exogenous
but rather endogenously produced by the agent before she interacts with the principal.

5.1 Optimal screening under alternative evidence structures

I study optimal screening under three alternative scenarios: (i) The agent cannot withhold
evidence, (ii) the agent can also present evidence of talent, or (iii) the agent cannot present
evidence (on either dimension of her type).36

34The analysis can apply to presentations more generally (e.g., by a start-up founder to a venture
capital firm).

35The agent is equally likely to find an answer to any of the problems, so there is no need to identify
problems with an index.

36The case where the agent can present evidence on 𝑡 but not on 𝑒 is a relabeling of the main model.
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5.1.1 Optimal screening when the agent cannot withhold evidence

Assume that 𝑒 is observed by the principal. Then, given that the composite measure is at
least somewhat sensitive to 𝑡, verification reveals 𝑡 and thus the agent’s type completely.
The principal’s problem is decoupled: he can solve it for each 𝑒 separately.37 It is easy to
see that the optimal mechanism is described by Proposition 6.

Proposition 6. Assume that the agent cannot withhold evidence. In the optimal
mechanism, for every level of evidence 𝑒 ∈ [0,1], if

(i) 𝑢accept(𝑒) > max{𝑢verification(𝑒),0}, then every agent with evidence 𝑒 is accepted
without verification,

(ii) 0 > max{𝑢accept(𝑒), 𝑢verification(𝑒)}, then every agent with evidence 𝑒 is rejected
without verification,

(iii) 𝑢verification(𝑒) ≥ max{𝑢accept(𝑒), 0}, then an agent with evidence 𝑒 is accepted after
verification if 𝑢(𝑒,𝑡) ≥ 𝑐; otherwise, she is rejected without verification,

where 𝑢accept(𝑒) :=
∫︀ 1

0 𝑢(𝑒,𝑡)𝑓(𝑡)𝑑𝑡 and 𝑢verification(𝑒) :=
∫︀ 1

0 (𝑢(𝑒,𝑡) − 𝑐)I(𝑢(𝑒,𝑡) ≥ 𝑐)𝑓(𝑡)𝑑𝑡.

This implies that under a pro-𝑒 (resp. pro-𝑡 biased composite measure), if two agents
(𝑒1,𝑡1) and (𝑒2,𝑡2), 𝑒2 > 𝑒1, both need to have their composite measures verified (based on
their level of evidence) to get accepted, then the composite measure threshold that (𝑒1,𝑡1)
needs to meet is lower (resp. higher) than the composite measure threshold that (𝑒2,𝑡2)
needs to meet.38 For example, if the principal only values talent (i.e., 𝑢(𝑒,𝑡) = 𝑡 − 𝑞 for
some 𝑞 ∈ (0,1)), agents with less evidence do not need to have as high composite measures
(as those with more evidence) to get accepted. This is in stark contrast with the optimal
mechanism where agents can withhold evidence, in which case every agent faces the same
composite measure cutoff.

This analysis implies the following for college admissions. If (i) college applicants can
to a large extent hide their privilege and (ii) standardized tests reflect talent less than
colleges value talent, then every applicant will have to achieve roughly the same test score
to get admitted, and affirmative action (i.e., trying to control for unequal backgrounds,
measured by 𝑒) will not be very effective in admitting a diverse class of talented students.
If any of the two condition fails, affirmative action is effective. Particularly, if (i) college
applicants cannot withhold evidence of privilege and (ii) standardized tests reflect talent

37If the agent’s type is (𝑒𝑝,𝑒,𝑡) distributed over [0,1]3, where 𝑒𝑝 is the publicly observed part of evidence
and 𝑒 is the part that can be hidden, the principal can solve the problem for each 𝑒𝑝 separately. The
optimal mechanism is a collection mechanisms like the one described in section 3: one mechanism for
each value of 𝑒𝑝. In the case of a pro-𝑒 biased composite measure, for example, the optimal evidence
𝑒*(𝑒𝑝) and composite measure cutoffs 𝑠*(𝑒𝑝) depend on the observable part of evidence 𝑒𝑝.

38To see this, notice that under a pro-𝑒 (resp. pro-𝑡 biased composite measure), if 𝑢(𝑒1,𝑡1) = 𝑢(𝑒2,𝑡2) = 𝑐
and 𝑒2 > 𝑒1, then 𝜎(𝑒1,𝑡1) < 𝜎(𝑒1,𝑡1) (resp. 𝜎(𝑒1,𝑡1) > 𝜎(𝑒1,𝑡1)).
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less than colleges value talent, then applicants from disadvantaged backgrounds will
face lower test score cutoffs, and affirmative action is effective. If standardized tests are
sensitive enough to talent (compared to college preferences), then verification does not
create incentives for applicants to hide evidence of privilege (even if they can do so), and
affirmative action is effective regardless of whether college applicants can hide evidence of
privilege or not. Thus, if condition (i) or (ii) fails, a reversal of affirmative action would
have significant effects on diversity in college admissions.

5.1.2 Optimal screening when the agent can also present evidence of talent

Consider the case where the agent can also present evidence on 𝑡. That is, agent (𝑒,𝑡) can
report any (𝑒′,𝑡′) ≤ (𝑒,𝑡) but not 𝑒′ > 𝑒 or 𝑡′ > 𝑡. Then, the principal can clearly achieve
the full information first-best without verification, inducing every agent to present all her
evidence on both 𝑒 and 𝑡. The conclusion is the same if 𝑡 is observed at no cost by the
principal and 𝑒 is evidence.

A comparison between this and the main model offers the following lesson. When
there is a valuable quality that the agent cannot provide evidence on and the principal
can only imperfectly verify through a composite measure that is overly (compared to the
principal’s preferences) sensitive to another valuable quality, the principal is constrained
in his evaluation of the agent by the agent’s incentives to withhold evidence on that
other valuable quality. This problem vanishes if the agent can provide evidence on every
quality (or if those that she cannot provide evidence on are observed by the principal) or
if the composite measure is sensitive enough to the quality that the agent cannot provide
evidence on.

These results are consistent with the finding that hiding one’s effort is prevalent among
younger individuals. University students have been found to have a desire to project
“effortless perfection” by deliberately hiding how hard they study (Travers et al., 2015;
Casale et al., 2016). The psychology literature has emphasized personality traits that may
lie behind this finding. Namely, hiding effort has been identified as a unique expression of
perfectionistic self-presentation (Flett et al., 2016). My analysis suggests that this result
may be specific to younger people. If as a person progresses in her career, her talent is
revealed through all the evaluation stages that she goes through, then people that are
further in their career paths should have lower incentives to hide their hard work than
students and early-career professionals.

5.1.3 Optimal screening when the agent cannot present evidence

Consider the case where the agent can present evidence on neither 𝑒 nor 𝑡. That is, agent
(𝑒,𝑡) can report any (𝑒′,𝑡′) ∈ [0,1]2. We can still restrict attention to truthful mechanisms
with threshold acceptance policies after verification. Proposition 7 characterizes IC
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mechanisms.

Proposition 7. Assume that the agent cannot present evidence. A mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩
is IC if and only if

(i) Π(𝑒,𝑡) is non-decreasing in 𝑡 for every 𝑒,

(ii) Π(𝑒, 𝜏(𝑒,𝑠)) is constant in 𝑒 over 𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)] for every 𝑠 ∈ [0,1], and

(iii) (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) ≤ Π(0,0) for every (𝑒,𝑡),

where Π(𝑒,𝑡) ≡ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) + 𝑇 (𝑒,𝑡).

Condition (i) is identical to the one in Proposition 7, where 𝑒 is evidence. Condition
(iii) is stronger (when combined with the other two conditions) than the corresponding
condition (iii) of Proposition 7. It ensures that the least talented agent with the least
evidence does not have incentives to over-report her talent and/or evidence to imitate an
agent (𝑒,𝑡) with a higher composite measure. The condition is stricter than the one in
Proposition 7 because now agents can also imitate types with higher 𝑒 to potentially get
accepted without verification. Thus, that agents cannot present evidence on 𝑒 enhances
the need for verification. Last, condition (ii) ensures that an agent (𝑒,𝑡) does not want
to imitate an agent (𝑒′,𝑡′) with evidence equal composite measure 𝜎(𝑒′,𝑡′) = 𝜎(𝑒,𝑡) to get
accepted with probability Π(𝑒′,𝑡′) instead of Π(𝑒,𝑡). The condition is stricter than the one
in Proposition 7 because now agents can not only understate but also overstate 𝑒. This
nullifies the advantage that agents with high 𝑒 have (relative to agents with the same
composite measure but lower 𝑒) when they can present evidence.

The probability of getting accepted without verification is the same for ev-
eryone. Lemma 5 shows that we can constrain attention to mechanisms that satisfy
condition (iii) of Proposition 7 with equality.

Lemma 5. Assume that the agent cannot present evidence. Given any IC mechanism
𝑀 ≡ ⟨𝑇,𝑃 ⟩, there exists an IC mechanism 𝑀 ′ ≡ ⟨𝑇 ′,𝑃 ′⟩ with (1 − 𝑇 ′(𝑒,𝑡))𝑃 ′(𝑒,𝑡,∅) =
Π′(0,0) for every (𝑒,𝑡) that is outcome-equivalent to 𝑀 and has at most as high verification
costs as 𝑀 . For 𝑐 > 0, if also Π(𝑒,𝑡) > Π(0,0) for a positive measure of agent types, then
𝑀 ′ has lower verification costs than 𝑀 .

By Lemma 5, Π(𝑒,𝑡) = Π(0,0) + 𝑇 (𝑒,𝑡). Thus, the principal’s objective function,∫︀ 1
0

∫︀ 1
0 [Π(𝑒,𝑡)𝑢(𝑒,𝑡) − 𝑐𝑇 (𝑒,𝑡)] 𝑓(𝑒,𝑡)𝑑𝑡𝑑𝑒, can be written as

∫︁ 1

0

∫︁ 𝑒(𝑠)

𝑒(𝑠)
[Π(𝑒,𝜏(𝑒,𝑠))(𝑢(𝑒,𝜏(𝑒,𝑠)) − 𝑐) + 𝑐Π(0,0)] 𝑓(𝑒,𝜏(𝑒,𝑠))𝑑𝑒𝑑𝑠, (4)
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which is linear in Π, so by Bauer’s maximum principle, there exists an extreme Π (among
Π(𝑒, 𝜏(𝑒,𝑠)) that are constant in 𝑒 and non-decreasing in 𝑠) that solves the principal’s
problem. Proposition 8 describes that extreme optimal mechanism.

Proposition 8. Assume that the agent cannot present evidence. There exists an optimal
mechanism with Π(𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠*) and 𝑇 (𝑒,𝑡) = Π(𝑒,𝑡) − Π(0,0) for some 𝑠* ∈ [0,1].
That is, either

(i) 𝑠* = 0, and every agent is accepted without verification or

(ii) 𝑠* > 0, and each agent (𝑒,𝑡) is (a) accepted after verification if 𝜎(𝑒,𝑡) ≥ 𝑠* or (b)
rejected without verification if 𝜎(𝑒,𝑡) < 𝑠*.

The inability of agents to present evidence on one of their attributes limits the set of
IC mechanisms, thereby decreasing in most cases the principal’s optimal payoff.39 Also,
the principal now has to choose 𝑠* trading-off Type I and Type II errors even when 𝜎

is pro-𝑡 biased. Pro-𝑡 biased composite measures are not inherently better than pro-𝑒
biased ones when the agent cannot present evidence. Regardless of whether it is pro-𝑡 or
-𝑒 biased, the more closely the composite measure aligns with the principal’s preferences,
the higher the principal’s optimal payoff is.

A comparison between this and the main model implies the following about the “signal-
jamming” problem that arises in career concern models (see, e.g., Holmström, 1999), where
the employer monitors the employee’s productivity. If the employer can ask for evidence
of effort (which the employee can provide at little to no cost), the signal-jamming problem
is mitigated if productivity is sensitive enough to talent—compared to the employer’s
preferences for accepting (e.g., promoting) the employee. However, when productivity is
undersensitive enough to talent, the signal-jamming problem persists even if the employer
can ask for evidence of effort. In that case, agents have incentives to withhold evidence,
which they should be paid information rents to reveal.

5.2 Costly composite measure design

Treating the composite measure function 𝜎 as exogenous is reasonable in several appli-
cations. For example, in hiring for prestigious positions (section 4.1), the employee’s
production function for the other employer is not chosen by the employer hiring for the
prestigious position. In promotion decisions (section 4.2), the employee’s production
function in the current position depends on her current job description and responsibilities,

39In more detail, assume for simplicity that the optimal mechanism is unique. When the composite
measure is pro-𝑒 biased, if some—but not all–agent types are optimally accepted without verification
when the agent can present evidence on 𝑒 (i.e., 𝑒* ∈ (0,1) in Proposition 5), then the principal’s payoff is
lower when the agent cannot present evidence. When the composite measure is pro-𝑡 biased, if not all
agent types are optimally accepted without verification when the agent can present evidence on 𝑒 (i.e.,
𝑒* > 0 in Proposition 4), then the principal’s payoff is lower when the agent cannot present evidence.
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which should mostly reflect the firm’s regular operating needs rather than support the
employer’s promotion decisions.

However, in other cases (e.g., hiring decisions where verification amounts to tests and
interviews), the principal may be able to choose how agent types map into composite
measures. How does his problem change in that case? Let there be a cost 𝐶(𝜎) that the
principal needs to pay before the interaction with the agent, so that she can verify the
value of 𝜎 during the interaction with the agent. Indeed, it is reasonable that the principal
needs to design a composite measure (if she designs one at all) before the interaction
with the agent due to time constraints and the complexity of designing a composite
measure. Then, the principal’s problem can be solved in two steps: (i) finding the optimal
mechanism for each possible 𝜎 ∈ Σ, and then (ii) choosing the optimal 𝜎* ∈ Σ form the
set Σ of conceivable composite measure functions. The solution to the first step is the one
we have already described.40

If composite measures that are more sensitive to talent are more expensive to design,
the results of section 3 imply that as long as the composite measure is under-sensitive
(compared to the principal’s preferences) to talent, there are gains from increasing its
sensitivity to it, which the principal will have to compare to the cost of making the
composite measure more sensitive to talent. The principal will want to make the composite
measure at most as sensitive to talent as his preferences are, since composite measures
that are overly sensitive to talent are as effective as those that are exactly aligned with the
principal’s preferences. However, as section 5.1.3 has shown, when agents cannot present
evidence, the principal always gains from finely calibrating the composite measure’s
sensitivity to the agent’s attributes to make it align with his preferences—regardless of
whether the composite measure is pro-𝑡 or -𝑒 biased.

5.3 Endogenous evidence production

If the agent produces evidence before the interaction with the principal, in some settings,
the principal may be able to affect the agent’s evidence production by committing to a
mechanism before the agent produces evidence. Indeed, in promotion decisions (section
4.2), the employer may sometimes have the power to commit to promotion rules, using
the prospect of promotion to incentivize the employee to exert effort. Of course, whether
the employer wants to do that will depend on the extent to which using the prospect
of promotion to incentivize effort interferes with the primary objective of promotions:
assigning employees to the positions where they are most valuable. Treating evidence

40That is, assuming that Σ contains only pro-𝑡 and pro-𝑒 biased composite measures (and possibly a
composite measure that exactly matches the principal’s preferences). Also, if the composite measures in
Σ are totally ordered (i.e., any pair of iso-composite-measure curves of any two composite measures in Σ
cross at most once), there are no gains from designing multiple composite measures to the extent that all
composite measures are equally costly to verify.
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as exogenous is more in line with other applications. For instance, in hiring decisions
(section 4.1), a single employer has little labor market power to affect the candidate’s
effort to obtain credentials. Similarly, in college admissions (section 4.3), a single college
has little power to affect how hard high school students study.

Our characterization of the optimal mechanism then still applies—even if evidence is
endogenous, as long as the principal cannot influence evidence production by committing
ex ante to a mechanism. Let the agent’s talent 𝑡 follow a distribution with density 𝑔 and
support [0,1]. Taking as given the principal’s mechanism, summarized by evidence and
composite measure thresholds (𝑒*,𝑠*), the agent exerts costly effort 𝑥 ∈ R+ to produce
evidence.41 Exerting effort 𝑥 has cost 𝐶𝑡(𝑥), non-decreasing in 𝑥. Evidence is distributed,
conditional on 𝑥, according to density function ℎ𝑥(𝑒) with support [0,1]. Denote by 𝑥*(𝑡)
the equilibrium level of effort by type 𝑡. An equilibrium is a fixed point (𝑥*,𝑒*,𝑠*), where
𝑥* : [0,1] → R+ is a best-response to (𝑒*,𝑠*) and (𝑒*,𝑠*) is a best-response to 𝑥* (i.e., (𝑒*,𝑠*)
solve the principal’s problem when the agent’s type has density 𝑓(𝑒,𝑡) = 𝑔(𝑡)ℎ𝑥*(𝑡)(𝑒)).
(𝑥*,𝑒*,𝑠*) can be interpreted as a symmetric equilibrium where each of multiple “effort-
taking” principals chooses thresholds (𝑒*,𝑠*).

While a detailed analysis of endogenous evidence production is beyond the scope of
this paper, the following observation emphasizes the importance of the fact that the
optimal mechanism has been characterized under minimal assumptions on the agent’s
type distribution (i.e., that it admits a full-support density). In equilibrium, agents so
talented that they are accepted even they have 𝑒 = 0 and agents so untalented that they
are rejected even if they have 𝑒 = 1 do not exert effort. More generally, effort is often
be non-monotone in 𝑡. Thus, evidence and talent may be stochastically dependent in
complicated ways.42

6 Conclusion

This paper has proposed a model of multidimensional screening, where an agent (she)
with two attributes—training and talent—chooses how much hard evidence of training
to present. The principal (he) then (possibly) verifies at a cost the value of a composite
measure of training and talent, who then decides whether to accept or reject the agent.

41The optimal mechanism can always be summarized by these two thresholds. Under a pro-𝑡 biased
composite measure, there is only an evidence threshold.

42For example, let 𝑥 ∈ [0,1] with 𝐶𝑡(𝑥) := 𝜉(𝑡)𝑥2/2, where 𝜉(𝑡) > 0 is decreasing in 𝑡, 𝑢(𝑒,𝑡) :=
𝛾𝑢𝑒 + (1 − 𝛾𝑢)𝑡 − 𝑞, 𝜎(𝑒,𝑡) := 𝛾𝑠𝑒 + (1 − 𝛾𝑠)𝑡, where 1 > 𝛾𝑠 > 𝛾𝑢, and evidence has conditional distribution
function 𝐻𝑥(𝑒) :=

∫︀ 𝑒

0 ℎ𝑥(𝑦)𝑑𝑦 = −2𝑥𝑒(1 − 𝑒) + 𝑒(2 − 𝑒). Then,

𝑥*(𝑡) =

⎧⎪⎨⎪⎩
0 if 𝑡 ≤ 𝑠* − 𝛾𝑠

1 − 𝛾𝑠
or 𝑡 ≥ 𝑠*

1 − 𝛾𝑠
2[𝑠* − (1 − 𝛾𝑠)𝑡][𝛾𝑠 − 𝑠* + (1 − 𝛾𝑠)𝑡]

𝛾2
𝑠 𝜉(𝑡) if 𝑡 ∈

(︂
𝑠* − 𝛾𝑠

1 − 𝛾𝑠
,

𝑠*

1 − 𝛾𝑠

)︂
.
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The agent cannot unilaterally prove anything about her talent. The composite measure is
increasing in both training and talent, and the principal (weakly) values both training
and talent in an agent. If the principal is going to verify the value of the composite
measure, then the agent may have incentives to withhold evidence or training—although
the principal values training—to influence how the principal interprets the composite
measure. Particularly, she may want to withhold evidence to make the principal attribute
the composite measure to talent, thereby overestimating her talent.

This problem arises when the composite measure is less sensitive to talent than talent
is valuable to the principal. In that case, the optimal mechanism features three types of
inefficiencies, all of which favor high-evidence agents over low-evidence ones: (i) It accepts
some unworthy agents without verification but rather only by asking them to present a
certain level of evidence of training, and among agents who cannot meet that evidence
threshold, (ii) it accepts after verification some unworthy agents with medium-evidence
and low talent, and (iii) it rejects some worthy agents with high talent but low evidence.
Remarkably, this is the structure of the optimal mechanism even when the principal
only values talent. The principal still optimally rewards evidence of training even though
training is worthless to him.

The results indicate how less worthy individuals with high credentials or effort to show
are favored—by an optimal and objective evaluation mechanism—over more worthy ones,
who have however lower credentials (or effort to show). Ivy-Leaguers are immediately hired
by prestigious employers, while those from more modest backgrounds have to go through
less prestigious employers to prove their worth before landing a prestigious position. Even
controlling for the fact that they need to first take a less prestigious position, they may still
be at a disadvantage when trying to transition to a more prestigious one. Hard-working
employees with mediocre managerial skills are promoted to managerial positions over less
hard-working ones who would, however, make better managers.

Last, in college admissions, high school students from privileged backgrounds have an
advantage over equally good or even better students from modest backgrounds—even if
colleges value diversity and try to control for the applicants’ unequal backgrounds but
their evaluation mechanisms (e.g., standardized tests) are sensitive to the applicant’s
prior training. Affirmative action (i.e., trying to control for college applicants’ unequal
backgrounds) has limited effectiveness if two conditions are satisfied: (i) Applicants have
considerable room to withhold evidence of prior training and parental support, and (ii)
standardized test scores reflect talent less than colleges value talent. If any of the two
condition fails, then affirmative action is effective, and we should expect its reversal to
have significant effects on diversity in college admissions.
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A Proofs

Proof of Lemma 1 Take an IC mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩. Construct the mechanism
𝑀 ′ ≡ ⟨𝑇 ′,𝑃 ′⟩ with (i) 𝑃 ′

𝑎𝑡(𝑒,𝑡) = 1, (ii) 𝑇 ′(𝑒,𝑡) = 𝑇 (𝑒,𝑡)𝑃𝑎𝑡(𝑒,𝑡) ≤ 𝑇 (𝑒,𝑡), and (iii)
𝑃 ′(𝑒,𝑡,∅) = (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅)/(1 − 𝑇 ′(𝑒,𝑡)) for any (𝑒,𝑡).43

We have then that (a) 𝑇 ′(𝑒,𝑡)𝑃 ′
𝑎𝑡(𝑒,𝑡) = 𝑇 (𝑒,𝑡)𝑃𝑎𝑡(𝑒,𝑡), (b) (1 − 𝑇 ′(𝑒,𝑡))𝑃 ′(𝑒,𝑡,∅) =

(1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) and (c) Π′(𝑒,𝑡) = Π(𝑒,𝑡) for any (𝑒,𝑡). (a)-(c) combined imply that
the problem of every agent type under 𝑀 ′ is the same as it was under 𝑀 , so 𝑀 ′ is also
IC. (c) means that 𝑀 ′ is outcome-equivalent to 𝑀 .

Last, to see why the second part is true, notice that for 𝑐 > 0, 𝑀 ′ saves on verification
costs compared to 𝑀 if there exists (a positive measure of types) (𝑒,𝑡) with 𝑇 (𝑒,𝑡) > 0
and 𝑃𝑎𝑡(𝑒,𝑡) < 1. Q.E.D.

Proof of Proposition 1 Denote the total probability with which type (𝑒,𝑡) is accepted
if she reports (𝑒′,𝑡′) (with 𝑒′ ≤ 𝑒) by

̃︀𝑃 (𝑒′,𝑡′; 𝑒,𝑡) := (1 − 𝑇 (𝑒′,𝑡′))𝑃 (𝑒′,𝑡′,∅) + 𝑇 (𝑒′,𝑡′)I (𝜎(𝑒,𝑡) ≥ 𝜎(𝑒′,𝑡′)) .

Also, define condition (iii’) (a strengthening of condition (iii)) to say that (1 −
𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) ≤ Π(𝑒′,0) for every 𝑒,𝑡,𝑒′ with 𝑒 ≤ 𝑒′.

Step 1: I first show that condition (i) is necessary for IC by showing the contrapositive.
Assume that for some 𝑒,𝑡1,𝑡2 with 𝑡2 > 𝑡1, Π(𝑒,𝑡2) < Π(𝑒,𝑡1). Then, IC of type (𝑒,𝑡2) is
violated, since ̃︀𝑃 (𝑒,𝑡1; 𝑒,𝑡2) = Π(𝑒,𝑡1) > Π(𝑒,𝑡2), that is, (𝑒,𝑡2) can imitate (𝑒,𝑡1) to (reach
(𝑒,𝑡1)’s composite measure threshold and) get accepted with higher probability that she
would if she truthfully reported her type.

Step 2: I now show that condition (iii’) is necessary for IC by showing the contraposi-
tive.44 Assume that for some 𝑒,𝑒′,𝑡 with 𝑒′ ≥ 𝑒, (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) > Π(𝑒′,0). Then, IC
of type (𝑒′,0) is violated, since ̃︀𝑃 (𝑒,𝑡; 𝑒′,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) > Π(𝑒′,0), that is, (𝑒′,0)
can imitate (𝑒,𝑡) to get accepted with higher probability that she would if she truthfully
reported her type (even if her composite measure is lower than (𝑒,𝑡)’s).

Step 3: I now show that provided that (i) and (iii’) are satisfied, Π(𝑟, 𝜏 (𝑟,𝜎(𝑒,𝑡))) being
non-decreasing in 𝑟 over 𝑟 ∈ [𝑒(𝜎(𝑒,𝑡)),𝑒] for every (𝑒,𝑡) is necessary and sufficient for IC.

IC of type (𝑒,𝑡) is satisfied if and only if

max
(𝑒′,𝑡′)≤(𝑒,1)

[(1 − 𝑇 (𝑒′,𝑡′))𝑃 (𝑒′,𝑡′; ∅) + 𝑇 (𝑒′,𝑡′)I (𝜎(𝑒,𝑡) ≥ 𝜎(𝑒′,𝑡′))] = Π(𝑒,𝑡). (5)

Assume that conditions (i) and (iii’) are satisfied. Then, Π(𝑒,𝑡) ≥ Π(𝑒,0) ≥ (1 −
43In 𝑃 ′(𝑒,𝑡,∅), if 𝑇 ′(𝑒,𝑡) = 1, cancel (1 − 𝑇 (𝑒,𝑡)) in the numerator and (1 − 𝑇 ′(𝑒,𝑡)) in the denominator.
44That 𝑃 (𝑒,0,∅) = Π(𝑒,0) follows from 𝑇 (𝑒,0) = 0.
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𝑇 (𝑒′,𝑡′))𝑃 (𝑒′,𝑡′,∅) for any (𝑒′,𝑡′) with 𝑒′ ≤ 𝑒. Therefore, (5) is equivalent to

max
(𝑒′,𝑡′)∈{(𝑥,𝑦)∈[0,1]2:𝑥≤𝑒 and 𝜎(𝑒,𝑡)≥𝜎(𝑥,𝑦)}

[(1 − 𝑇 (𝑒′,𝑡′))𝑃 (𝑒′,𝑡′; ∅) + 𝑇 (𝑒′,𝑡′)] = Π(𝑒,𝑡). (6)

Given that Π(𝑒,𝑡) is non-decreasing in 𝑡 (condition (i)), (6) can equivalently be written as

max
𝑟∈[𝑒(𝜎(𝑒,𝑡)),𝑒]

{[1 − 𝑇 (𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡)))]𝑃 (𝑟,𝜏(𝑟,𝜎(𝑒,𝑡)),∅) + 𝑇 (𝑟,𝜏(𝑟,𝜎(𝑒,𝑡)))} = Π(𝑒,𝑡)

or equivalently,

𝑒 ∈ arg max
𝑟∈[𝑒(𝜎(𝑒,𝑡)),𝑒]

Π(𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡))). (7)

Thus, IC is satisfied for every type if and only if for every (𝑒,𝑡), (7) is satisfied. This is
true if and only if Π(𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡))) is non-decreasing in 𝑟 for 𝑟 ∈ [𝑒(𝜎(𝑒,𝑡)),𝑒] for every
(𝑒,𝑡).

That the latter is sufficient for (7) to hold for every (𝑒,𝑡) is immediate. I show
necessity by showing the contrapositive. Assume that for some (𝑒,𝑡), Π(𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡))) is
not non-decreasing in 𝑟 for 𝑟 ∈ [𝑒(𝜎(𝑒,𝑡)),𝑒]. That is, for some (𝑒,𝑡) there exist 𝑟1, 𝑟2 with
𝑒(𝜎(𝑒,𝑡)) ≤ 𝑟1 < 𝑟2 ≤ 𝑒 such that Π(𝑟2, 𝜏(𝑟2,𝜎(𝑒,𝑡))) < Π(𝑟1, 𝜏(𝑟1,𝜎(𝑒,𝑡))). Then,

𝑟2 ̸∈ arg max
𝑥∈[𝑒(𝜎(𝑒,𝑡)),𝑟2]

Π(𝑥, 𝜏(𝑥,𝜎(𝑒,𝑡))).

Namely, IC of type (𝑟2, 𝜏(𝑟2,𝜎(𝑒,𝑡))) is violated, as she prefers to imitate type (𝑟1, 𝜏(𝑟1,𝜎(𝑒,𝑡))).
Step 4: It is easy to see that Π(𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡))) being non-decreasing in 𝑟 over 𝑟 ∈

[𝑒(𝜎(𝑒,𝑡)),𝑒] for every (𝑒,𝑡) is equivalent to condition (ii).
Step 5: Finally, notice that provided that conditions (i) and (ii) hold, conditions (iii)

and (iii’) are equivalent. That (iii’) implies (iii) is immediate. We will show that the
opposite direction also holds. Assume that conditions (i), (ii), and (iii) hold. Then, for
any 𝑒,𝑒′,𝑡 with 𝑒′ ≥ 𝑒

Π(𝑒′,0) ≥ Π(𝑒, 𝜏(𝑒,𝜎(𝑒′,0))) ≥ Π(𝑒,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅),

where the first inequality follows from condition (ii),45 the second from condition (i), and
the third from condition (iii). Q.E.D.

Proof of Lemma 2 Take any IC mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩. Condition (iii) of Proposition
1 says that Π(𝑒,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) for any (𝑒,𝑡). Then, construct the mechanism

45The first inequality assumes that 𝑒 ≥ 𝑒(𝜎(𝑒′,0)). If this is not the case, using conditions (i) and (ii)
iteratively, we can still show that Π(𝑒′,0) ≥ Π(𝑒,0).
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𝑀 ′ := ⟨𝑇 ′,𝑃 ′⟩ with46

𝑇 ′(𝑒,𝑡) := Π(𝑒,𝑡) − Π(𝑒,0) = (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) + 𝑇 (𝑒,𝑡) − Π(𝑒,0)

≤ Π(𝑒,0) + 𝑇 (𝑒,𝑡) − Π(𝑒,0) = 𝑇 (𝑒,𝑡), and

𝑃 ′(𝑒,𝑡,∅) := Π(𝑒,0)
1 − Π(𝑒,𝑡) + Π(𝑒,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅)

1 − Π(𝑒,𝑡) + (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) = 𝑃 (𝑒,𝑡,∅)

for every (𝑒,𝑡), where the inequalities follow from Π(𝑒,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅).
By construction we have that Π′(𝑒,𝑡) = Π(𝑒,𝑡) for every (𝑒,𝑡), so 𝑀 ′ satisfies conditions

(i) and (ii) of Proposition 1. By construction, we also have that for every (𝑒,𝑡)

Π′(𝑒,0) = Π(𝑒,0) = (1 − 𝑇 ′(𝑒,𝑡))𝑃 ′(𝑒,𝑡,∅),

so 𝑀 ′ also satisfies condition (iii) of Proposition 1. Therefore, 𝑀 ′ is IC.
Last, to see why the second part is true, notice that for 𝑐 > 0, 𝑀 ′ saves on verification

costs compared to 𝑀 if there exists (a positive measure of) (𝑒,𝑡) with 𝑃 (𝑒,𝑡,∅)(1−𝑇 (𝑒,𝑡)) <

Π(𝑒,0), since 𝑇 ′(𝑒,𝑡) < 𝑇 (𝑒,𝑡) for such (𝑒,𝑡). Q.E.D.

Proof of Lemmata 3 and 4 I prove the more general Lemma 4. It is useful to look at
the principal’s choice as a function Π(𝑒,𝜏(𝑒,𝑠)) of (𝑒,𝑠). Denote by 𝒫 ⊆ 𝐿1({(𝑒,𝑠) ∈ [0,1]2 :
𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)]}) the space of non-decreasing functions from {(𝑒,𝑠) ∈ [0,1]2 : 𝑒 ∈ [𝑒(𝑠),𝑒(𝑠)]}
to [0,1]. 𝒫 is convex and compact (e.g., see Yang and Yang, 2025). The objective function
(3) is linear (and thus convex) in Π. By the Dominated Convergence Theorem, it is
also continuous in Π. By Bauer’s maximum principle, it follows that there exists a
maximizing function (𝑒,𝑠) → Π(𝑒,𝜏(𝑒,𝑠)) that is an extreme point of 𝒫 . Last, a function
(𝑒,𝑠) → Π(𝑒,𝜏(𝑒,𝑠)) is an extreme point of 𝒫 if and only if Π(𝑒,𝜏(𝑒,𝑠)) ∈ {0,1} for all (𝑒,𝑠)
is its domain (see Theorem 40.1 in Choquet, 1954). Q.E.D.

Proof of Proposition 2 We need to show that Π(𝑒,𝑡) = I (𝑢(𝑒,𝑡) > 0) satisfies condi-
tions (i) and (ii) of Proposition 1.

Condition (i): Since Π(𝑒,𝑡) ∈ {0,1} for every (𝑒,𝑡), it suffices to show that for any (𝑒,𝑡),
if Π(𝑒,𝑡) = 1, then Π(𝑒,𝑡′) = 1 for every 𝑡′ ≥ 𝑡. Indeed, we have that for any (𝑒,𝑡)

Π(𝑒,𝑡) = 1 =⇒ 𝑢(𝑒,𝑡) > 0 =⇒ 𝑢(𝑒,𝑡′) > 0 for every 𝑡′ ≥ 𝑡,

where the second implication follows since 𝑢(𝑒,𝑡) is non-decreasing in 𝑡.
Condition (ii): Similarly, it suffices to show that for any (𝑟,𝑠), if Π(𝑟,𝜏(𝑟,𝑠)) = 1, then

Π(𝑟′,𝜏(𝑟′,𝑠)) = 1 for every 𝑟′ ∈ [𝑟, 𝑒(𝑠)]. Indeed, we have that for any (𝑟,𝑠), Π(𝑟,𝜏(𝑟,𝑠)) = 1
implies that 𝑢(𝑟,𝜏(𝑟,𝑠)) > 0, which in turn implies that 𝑢(𝑟′,𝜏(𝑟′,𝑠)) > 0 for every

46For (𝑒,𝑡) such that Π(𝑒,𝑡) = 1 and Π(𝑒,0) = 0, set 𝑃 ′(𝑒,𝑡,∅) = 0.
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𝑟′ ∈ [𝑟, 𝑒(𝑠)].
To see why the last part follows, assume instead that 𝑢(𝑟′,𝜏(𝑟′,𝑠)) ≤ 0 for some

𝑟′ ∈ [𝑟, 𝑒(𝑠)]. Particularly, it must be 𝑟′ > 𝑟. Since 𝜎 is pro-𝑡 biased, there exists 𝑒𝑠 such
that if 𝑒 > 𝑒𝑠 (resp. 𝑒 ≤ 𝑒𝑠) and 𝜎(𝑒,𝑡) = 𝑠, then 𝑢(𝑒,𝑡) > 0 (resp. 𝑢(𝑒,𝑡) ≤ 0). We
have that 𝑢(𝑟′,𝜏(𝑟′,𝑠)) ≤ 0, so 𝜎 being pro-𝑡 biased implies that 𝑟′ ≤ 𝑒𝑠. But 𝑟′ > 𝑟, so
𝑟 < 𝑒𝑠, and since 𝜎(𝑟,𝜏(𝑟,𝑠)) = 𝑠, 𝜎 being pro-𝑡 biased implies that 𝑢(𝑟,𝜏(𝑟,𝑠)) ≤ 0, a
contradiction. Q.E.D.

Proof of Proposition 3 Step 1: In definition 4 of a pro-𝑒 biased composite measure,
for 𝑠 such that 𝑢(𝑒,𝑡) > 𝑐 = 0 (resp. 𝑢(𝑒,𝑡) ≤ 0) for every (𝑒,𝑡) ∈ 𝐼𝜎(𝑠), 𝑒𝑠 is not
uniquely defined. In that case, for 𝑠 such that 𝑢(𝑒,𝑡) > 0 (resp. 𝑢(𝑒,𝑡) ≤ 0) for every
(𝑒,𝑡) ∈ 𝐼𝜎(𝑠), set 𝑒𝑠 = 𝑒(𝑠) (resp. 𝑒𝑠 = 𝑒(𝑠)). We will show that (under a pro-𝑒 biased
composite measure) 𝑒𝑠 is non-decreasing in 𝑠. Take any 𝑠,𝑠 ∈ [0,1] with 𝑠 > 𝑠, and define
𝑆 := (𝑒𝑠,𝑒𝑠) ∩ [𝑒(𝑠), 𝑒(𝑠)] ∩ [𝑒(𝑠), 𝑒(𝑠)].

Step 1, case 1: If 𝑆 = ∅, then 𝑒𝑠 ≤ 𝑒𝑠. To see this, consider the following two subcases.
Step 1, case 1(a): if 𝑒(𝑠) ≥ 𝑒(𝑠), then 𝑒𝑠 ≤ 𝑒(𝑠) ≤ 𝑒(𝑠) ≤ 𝑒𝑠, so 𝑒𝑠 ≤ 𝑒𝑠, a contradiction.
Step 1, case 1(b): if 𝑒(𝑠) < 𝑒(𝑠), then 𝑆 = (𝑒𝑠,𝑒𝑠) ∩ [𝑒(𝑠), 𝑒(𝑠)]. Since 𝑆 = ∅, either

𝑒(𝑠) ≥ 𝑒𝑠 or 𝑒(𝑠) ≤ 𝑒𝑠. If 𝑒(𝑠) ≥ 𝑒𝑠, then 𝑒𝑠 ≤ 𝑒(𝑠) ≤ 𝑒𝑠, so 𝑒𝑠 ≤ 𝑒𝑠, a contradiction.
Similarly, if 𝑒(𝑠) ≤ 𝑒𝑠, then 𝑒𝑠 ≤ 𝑒(𝑠) ≤ 𝑒𝑠, so 𝑒𝑠 ≤ 𝑒𝑠, a contradiction.

Step 1, case 2: We now prove by contradiction that if 𝑆 ̸= ∅, then 𝑒𝑠 ≤ 𝑒𝑠. To this
end, assume that 𝑆 ≠ ∅ and 𝑒𝑠 > 𝑒𝑠. Given that 𝑆 ̸= ∅, we can take some 𝑒* ∈ 𝑆. Since
𝑒* ∈ [𝑒(𝑠), 𝑒(𝑠)] and 𝜎 is continuous, there exists 𝑡* ∈ [0,1] such that 𝜎(𝑒*,𝑡*) = 𝑠. Since
𝜎 is pro-𝑒 biased and 𝑒* < 𝑒𝑠, it follows that 𝑢(𝑒*,𝑡*) > 0. Similarly, since 𝜎 is pro-𝑒
biased, 𝑒* > 𝑒𝑠, and 𝑒* ∈ [𝑒(𝑠), 𝑒(𝑠)], there exists 𝑡** ∈ [0,1] such that 𝜎(𝑒*,𝑡**) = 𝑠 and
𝑢(𝑒*,𝑡**) ≤ 0. Also, because 𝑠 > 𝑠 and 𝜎(𝑒,𝑡) is increasing in 𝑡, 𝑡** > 𝑡*. Overall, we have
𝑡** > 𝑡* and 𝑢(𝑒*,𝑡*) > 0 ≥ 𝑢(𝑒*,𝑡**), a contradiction to 𝑢(𝑒,𝑡) being non-decreasing in 𝑡.

Step 2: Given 𝑒𝑠, define also 𝑡𝑠 implicitly given by 𝜎(𝑒𝑠,𝑡𝑠) = 𝑠. We have then that
for every composite measure 𝑠 ∈ [0,1], (𝑒𝑠,𝑡𝑠) is the “threshold” agent who lies on the
iso-composite-measure curve 𝐼𝜎(𝑠). That is, any other agent (𝑒,𝑡) on that iso-composite-
measure curve with 𝑒 < 𝑒𝑠 (resp. 𝑒 > 𝑒𝑠) gives—if accepted—a positive (resp. negative)
payoff to the principal.

We divide the problem of finding an optimal IC mechanism in three parts. First, we fix
an arbitrary “partial” IC mechanism 𝑠 ↦→ Π(𝑒𝑠,𝑡𝑠) for every 𝑠 ∈ [0,1]. Then, we complete
that partial IC mechanism (i.e., we assign a value to Π(𝑒,𝑡) for every (𝑒,𝑡) for which Π(𝑒,𝑡)
has no been assigned a value in the first step), so that the complete mechanism is IC and
optimal given the fixed partial mechanism. Finally, we find an optimal partial mechanism.

Step 3: Fix the value of Π(𝑒𝑠,𝑡𝑠) for every 𝑠 ∈ [0,1] such that these values are part of
some IC mechanism.47 Given that 𝑒𝑠 is non-decreasing in 𝑠, by Proposition 1, the values

47That is, fix the value of Π(𝑒𝑠,𝑡𝑠) for every 𝑠 ∈ [0,1] to be such that there exists IC Π : [0,1]2 → [0,1]
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of Π(𝑒𝑠,𝑡𝑠) are part of some IC mechanism if and only if Π(𝑒𝑠,𝑡𝑠) is non-decreasing in 𝑠.
Therefore, by Proposition 4, there exists an optimal mechanism with Π(𝑒𝑠,𝑡𝑠) = I(𝑠 ≥ 𝑠)
for some 𝑠 ∈ [0,1].

Step 4: It follows then that for IC to be satisfied by the complete mechanism, it must
be that (i) Π(𝑒,𝑡) = 1 for every (𝑒,𝑡) such that 𝑒 > 𝑒𝑠 and 𝜎(𝑒,𝑡) = 𝑠 for some 𝑠 ≥ 𝑠 and
(ii) Π(𝑒,𝑡) = 0 for every (𝑒,𝑡) such that 𝑒 < 𝑒𝑠 and 𝜎(𝑒,𝑡) = 𝑠 for some 𝑠 < 𝑠. Also, since
(𝑒𝑠,𝑡𝑠) is the “threshold” agent, the principal wants to make Π(𝑒,𝑡) as high (resp. low) as
possible for every (𝑒,𝑡) such that 𝑒 < 𝑒𝑠 (resp. 𝑒 > 𝑒𝑠). Thus, given the IC constraint, it is
optimal to set (i) Π(𝑒,𝑡) = 1 for every (𝑒,𝑡) such that 𝑒 < 𝑒𝑠 and 𝜎(𝑒,𝑡) = 𝑠 for some 𝑠 ≥ 𝑠

and (ii) Π(𝑒,𝑡) = 0 for every (𝑒,𝑡) such that 𝑒 > 𝑒𝑠 and 𝜎(𝑒,𝑡) = 𝑠 for some 𝑠 < 𝑠. Q.E.D.

Proof of Proposition 4 By IC conditions (i) and (ii) of Proposition 1, any IC mechanism
has Π(𝑒,0) non-decreasing in 𝑒. Thus, given Lemma 4, there exists an optimal mechanism
with Π(𝑒,0) = I(𝑒 ≥ 𝑒*) for some 𝑒* ∈ [0,1]. The objective function (3) then becomes

∫︁ 1

0

∫︁ min{𝑒(𝑠),𝑒*}

min{𝑒(𝑠),𝑒*}
[Π(𝑒,𝜏(𝑒,𝑠))(𝑢(𝑒,𝜏(𝑒,𝑠)) − 𝑐)] 𝑓(𝑒,𝜏(𝑒,𝑠))𝑑𝑒𝑑𝑠

+
∫︁ 1

0

∫︁ 1

𝑒*
𝑢(𝑒,𝑡)𝑓(𝑒,𝑡)𝑑𝑒𝑑𝑡.

The mechanism affects the second term only through 𝑒*. Given 𝑒*, setting Π(𝑒,𝑡) =
I (𝑢(𝑒,𝑡) ≥ 𝑐 or 𝑒 ≥ 𝑒*) maximizes the first term and—given that 𝜎 is pro-𝑡 biased—makes
the mechanism IC, since it satisfies conditions (i) and (ii) of Proposition 1. 𝑇 (𝑒,𝑡) =
I(𝑢(𝑒,𝑡) ≥ 𝑐 and 𝑒 < 𝑒*) is backed out from Lemma 4. Q.E.D.

Proof of Proposition 5 By IC conditions (i) and (ii) of Proposition 1, any IC mechanism
has Π(𝑒,0) non-decreasing in 𝑒. Thus, given Lemma 4, there exists an optimal mechanism
with Π(𝑒,0) = I(𝑒 ≥ 𝑒*) for some 𝑒* ∈ [0,1]. The objective function (3) then becomes

∫︁ 1

0

∫︁ min{𝑒(𝑠),𝑒*}

min{𝑒(𝑠),𝑒*}
[Π(𝑒,𝜏(𝑒,𝑠))(𝑢(𝑒,𝜏(𝑒,𝑠)) − 𝑐)] 𝑓(𝑒,𝜏(𝑒,𝑠))𝑑𝑒𝑑𝑠

+
∫︁ 1

0

∫︁ 1

𝑒*
𝑢(𝑒,𝑡)𝑓(𝑒,𝑡)𝑑𝑒𝑑𝑡.

The mechanism affects the second term only through 𝑒*. Given 𝑒*, maximizing the first
term is equivalent to the problem studied by Proposition 3 with the principal’s payoff
function given by 𝑢(𝑒,𝑡) − 𝑐. Thus, for 𝑒 < 𝑒*, Π(𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠* for some 𝑠* ∈ [0,1]
maximizes the first term (under the IC conditions, when the problem is restricted to
(𝑒,𝑡) < (𝑒*,1)). The complete mechanism then has Π(𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠* or 𝑒 ≥ 𝑒*),
which satisfies conditions (i) and (ii) of Proposition 1. 𝑇 (𝑒,𝑡) = I(𝜎(𝑒,𝑡) ≥ 𝑠* and 𝑒 < 𝑒*)
is backed out from Lemma 4. Q.E.D.

that agrees with the values of Π(𝑒𝑠,𝑡𝑠) for every 𝑠 ∈ [0,1].
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Proof of Proposition 6 Trivial and thus omitted.

Proof of Proposition 7 Denote the total probability with which type (𝑒,𝑡) is accepted
if she reports (𝑒′,𝑡′) (with 𝑒′ ≤ 𝑒) by

̃︀𝑃 (𝑒′,𝑡′; 𝑒,𝑡) := (1 − 𝑇 (𝑒′,𝑡′))𝑃 (𝑒′,𝑡′,∅) + 𝑇 (𝑒′,𝑡′)I (𝜎(𝑒,𝑡) ≥ 𝜎(𝑒′,𝑡′)) .

Also, define condition (iii’) (a strengthening of condition (iii)) to say that (1 −
𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) ≤ Π(𝑒′,0) for every 𝑒,𝑡,𝑒′.

Step 1: I first show that condition (i) is necessary for IC by showing the contrapositive.
Assume that for some 𝑒,𝑡1,𝑡2 with 𝑡2 > 𝑡1, Π(𝑒,𝑡2) < Π(𝑒,𝑡1). Then, IC of type (𝑒,𝑡2) is
violated, since ̃︀𝑃 (𝑒,𝑡1; 𝑒,𝑡2) = Π(𝑒,𝑡1) > Π(𝑒,𝑡2).

Step 2: I now show that condition (iii’) is necessary for IC by showing the contrapositive.
Assume that for some 𝑒,𝑒′,𝑡, (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) > Π(𝑒′,0). Then, IC of type (𝑒′,0) is
violated, since ̃︀𝑃 (𝑒,𝑡; 𝑒′,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) > Π(𝑒′,0).

Step 3: I now show that provided that (i) and (iii’) are satisfied, Π(𝑟, 𝜏 (𝑟,𝜎(𝑒,𝑡))) being
constant in 𝑟 over 𝑟 ∈ [𝑒(𝜎(𝑒,𝑡)),𝑒] for every (𝑒,𝑡) is necessary and sufficient for IC.

IC of type (𝑒,𝑡) is satisfied if and only if

max
(𝑒′,𝑡′)≤(1,1)

[(1 − 𝑇 (𝑒′,𝑡′))𝑃 (𝑒′,𝑡′; ∅) + 𝑇 (𝑒′,𝑡′)I (𝜎(𝑒,𝑡) ≥ 𝜎(𝑒′,𝑡′))] = Π(𝑒,𝑡). (8)

Assume that conditions (i) and (iii’) are satisfied. Then, Π(𝑒,𝑡) ≥ Π(𝑒,0) ≥ (1 −
𝑇 (𝑒′,𝑡′))𝑃 (𝑒′,𝑡′,∅) for any (𝑒′,𝑡′). Therefore, (8) is equivalent to

max
(𝑒′,𝑡′)∈{(𝑥,𝑦)∈[0,1]2:𝜎(𝑒,𝑡)≥𝜎(𝑥,𝑦)}

[(1 − 𝑇 (𝑒′,𝑡′))𝑃 (𝑒′,𝑡′; ∅) + 𝑇 (𝑒′,𝑡′)] = Π(𝑒,𝑡). (9)

Given that Π(𝑒,𝑡) is non-decreasing in 𝑡 (condition (i)), (9) can equivalently be written as

max
𝑟∈[𝑒(𝜎(𝑒,𝑡)),1]

{[1 − 𝑇 (𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡)))]𝑃 (𝑟,𝜏(𝑟,𝜎(𝑒,𝑡)),∅) + 𝑇 (𝑟,𝜏(𝑟,𝜎(𝑒,𝑡)))} = Π(𝑒,𝑡)

or equivalently,

𝑒 ∈ arg max
𝑟∈[𝑒(𝜎(𝑒,𝑡)),𝑒(𝜎(𝑒,𝑡))]

Π(𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡))). (10)

Thus, IC is satisfied for every type if and only if for every (𝑒,𝑡), (10) is satisfied. This is
true if and only if Π(𝑟, 𝜏(𝑟,𝜎(𝑒,𝑡))) is constant in 𝑟 for 𝑟 ∈ [𝑒(𝜎(𝑒,𝑡)),𝑒(𝜎(𝑒,𝑡))] for every
(𝑒,𝑡).

That the latter is sufficient for (10) to hold for every (𝑒,𝑡) is immediate. I show necessity
by showing the contrapositive. Assume that for some (𝑒,𝑡), Π(𝑟, 𝜏 (𝑟,𝜎(𝑒,𝑡))) is not constant
in 𝑟 for 𝑟 ∈ [𝑒(𝜎(𝑒,𝑡)),1]. That is, for some (𝑒,𝑡) there exist 𝑟1, 𝑟2 with 𝑒(𝜎(𝑒,𝑡)) ≤ 𝑟1 <
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𝑟2 ≤ 𝑒(𝜎(𝑒,𝑡)) such that Π(𝑟2, 𝜏(𝑟2,𝜎(𝑒,𝑡))) ̸= Π(𝑟1, 𝜏(𝑟1,𝜎(𝑒,𝑡))). If Π(𝑟2, 𝜏(𝑟2,𝜎(𝑒,𝑡))) <

Π(𝑟1, 𝜏(𝑟1,𝜎(𝑒,𝑡))), IC of type (𝑟2, 𝜏(𝑟2,𝜎(𝑒,𝑡))) is violated, as she prefers to imitate
type (𝑟1, 𝜏(𝑟1,𝜎(𝑒,𝑡))). If, instead, Π(𝑟2, 𝜏(𝑟2,𝜎(𝑒,𝑡))) > Π(𝑟1, 𝜏(𝑟1,𝜎(𝑒,𝑡))), IC of type
(𝑟1, 𝜏(𝑟1,𝜎(𝑒,𝑡))) is violated, as she prefers to imitate type (𝑟2, 𝜏(𝑟2,𝜎(𝑒,𝑡))).

Step 4: It is easy to see that Π(𝑟, 𝜏 (𝑟,𝜎(𝑒,𝑡))) being constant in 𝑟 over 𝑟 ∈ [𝑒(𝜎(𝑒,𝑡)),𝑒(𝜎(𝑒,𝑡))]
for every (𝑒,𝑡) is equivalent to condition (ii).

Step 5: Finally, notice that provided that conditions (i) and (ii) hold, conditions (iii)
and (iii’) are equivalent. Q.E.D.

Proof of Lemma 5 Take any IC mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩. Condition (iii) of Proposition
1 says that Π(0,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) for any (𝑒,𝑡). Then, construct the mechanism
𝑀 ′ := ⟨𝑇 ′,𝑃 ′⟩ with48

𝑇 ′(𝑒,𝑡) := Π(𝑒,𝑡) − Π(0,0) = (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) + 𝑇 (𝑒,𝑡) − Π(0,0)

≤ Π(0,0) + 𝑇 (𝑒,𝑡) − Π(0,0) = 𝑇 (𝑒,𝑡), and

𝑃 ′(𝑒,𝑡,∅) := Π(0,0)
1 − Π(𝑒,𝑡) + Π(0,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅)

1 − Π(𝑒,𝑡) + (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅) = 𝑃 (𝑒,𝑡,∅)

for every (𝑒,𝑡), where the inequalities follow from Π(0,0) ≥ (1 − 𝑇 (𝑒,𝑡))𝑃 (𝑒,𝑡,∅).
By construction we have that Π′(𝑒,𝑡) = Π(𝑒,𝑡) for every (𝑒,𝑡), so 𝑀 ′ satisfies conditions

(i) and (ii) of Proposition 7. By construction, we also have that for every (𝑒,𝑡)

Π′(0,0) = Π(0,0) = (1 − 𝑇 ′(𝑒,𝑡))𝑃 ′(𝑒,𝑡,∅),

so 𝑀 ′ also satisfies condition (iii) of Proposition 7. Therefore, 𝑀 ′ is IC.
Last, to see why the second part is true, notice that for 𝑐 > 0, 𝑀 ′ saves on verification

costs compared to 𝑀 if there exists (a positive measure of) (𝑒,𝑡) with 𝑃 (𝑒,𝑡,∅)(1−𝑇 (𝑒,𝑡)) <

Π(0,0), since 𝑇 ′(𝑒,𝑡) < 𝑇 (𝑒,𝑡) for such (𝑒,𝑡). Q.E.D.

48If Π(0,0) = 0, then for (𝑒,𝑡) such that Π(𝑒,𝑡) = 1, set 𝑃 ′(𝑒,𝑡,∅) = 0.
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Online Appendix

Multidimensional screening with substitutable attributes and costly
verification

Orestis Vravosinos

B (𝑚 + 𝑛)-dimensional screening with substitutable
attributes and costly verification

We now generalize the results allowing for multiple dimensions of evidence and talent. Let
the agent’s type be (𝑒1,𝑒2, . . . ,𝑒𝑚,𝑡1,𝑡2, . . . ,𝑡𝑛) with full-support density 𝑓 : [0,1]𝑚+𝑛 →
R++. (𝑒1,𝑒2, . . . ,𝑒𝑚) are different dimensions of evidence and (𝑡1,𝑡2, . . . ,𝑡𝑚) are different
dimensions of talent. The agent can present any combination of evidence 𝑟 ∈ [0, 𝑒]. The
composite measure 𝜎 : [0,1]𝑚+𝑛 → [0,1] is continuous and increasing. 𝑢(𝑒,𝑡) is continuous
and non-decreasing. It follows by the same arguments as before that truthful mechanisms
with threshold acceptance policies after verification are without loss.

Lemma 6 makes the following additional observation: among agents with the same
evidence and composite measure, IC mechanisms cannot screen for different dimensions of
talent. That Π(𝑒,𝑡) = Π(𝑒,𝑡′) for every 𝑒,𝑡,𝑡′ with 𝜎(𝑒,𝑡) = 𝜎(𝑒,𝑡′) is necessary to ensure
that no agent has incentives to present all her evidence but misreport her talent to imitate
an agent with the same composite measure.

Lemma 6. If a mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩ is IC, then Π(𝑒,𝑡) = Π(𝑒,𝑡′) for every 𝑒,𝑡,𝑡′ such
that 𝜎(𝑒,𝑡) = 𝜎(𝑒,𝑡′).

Therefore, we restrict attention to mechanisms with Π(𝑒,𝑡) = Π(𝑒,𝑡′) for every 𝑒,𝑡,𝑡′

such that 𝜎(𝑒,𝑡) = 𝜎(𝑒,𝑡′). Lemma 7 shows that we can further restrict attention to
mechanisms that treat agents with the same evidence and composite measure exactly the
same way with respect to verification and acceptance probabilities.

Lemma 7. Given any IC mechanism 𝑀 , there exists an IC mechanism 𝑀 ′ ≡ ⟨𝑇 ′,𝑃 ′⟩ with
𝑇 ′(𝑒,𝑡) = 𝑇 ′(𝑒,𝑡′) and 𝑃 ′(𝑒,𝑡,∅) = 𝑃 ′(𝑒,𝑡′,∅) for every 𝑒,𝑡,𝑡′ such that 𝜎(𝑒,𝑡) = 𝜎(𝑒,𝑡′)
that is outcome-equivalent to 𝑀 . Also, for 𝑐 > 0, in any optimal mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩,
𝑇 (𝑒,𝑡) = 𝑇 (𝑒,𝑡′) for almost every 𝑒,𝑡,𝑡′ such that 𝜎(𝑒,𝑡) = 𝜎(𝑒,𝑡′).

Here is the intuition behind this result. The only reason to verify an agent’s composite
measure before accepting her—rather than accept her without verification—is to prevent
others from imitating her. Take any agent (𝑒,𝑡) who contemplates which of the agents
in the set 𝑋(𝑒′,𝑠) := {(𝑒′,𝑡′) : 𝜎(𝑒′,𝑡′) = 𝑠}, where 𝑒′ ≤ 𝑒, to imitate. By Lemma 6, Π
is the same for every agent in 𝑋(𝑒,𝑠), so if 𝜎(𝑒,𝑡) ≥ 𝑠, then agent (𝑒,𝑡)’s payoff from
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imitating an agent in 𝑋(𝑒′,𝑠) does not depend on which particular agent she chooses to
imitate. If, on the other hand, 𝜎(𝑒,𝑡) < 𝑠, agent (𝑒,𝑡)’s payoff from imitating an agent
(𝑒′,𝑡′) ∈ 𝑋(𝑒′,𝑠) is increasing (resp. decreasing) in 𝑃 (𝑒′,𝑡′,∅) (resp. 𝑇 (𝑒′,𝑡′)). Among
all agents in 𝑋(𝑒′,𝑠), (𝑒,𝑡) will want to imitate the one with the highest probability of
acceptance without verification. Thus, the principal can decrease 𝑇 (𝑒′,𝑡′) and increase
𝑃 (𝑒′,𝑡′,∅) for every agent (𝑒′,𝑡′) ∈ 𝑋(𝑒′,𝑠) with 𝑇 (𝑒′,𝑡′) > inf(𝑒′′,𝑡′′)∈𝑋(𝑒′,𝑠) 𝑇 (𝑒′′,𝑡′′) (and
thus 𝑃 (𝑒′′,𝑡′,∅) < sup(𝑒′′,𝑡′′)∈𝑋(𝑒′,𝑠) 𝑃 (𝑒′,𝑡′′,∅)) keeping Π fixed. We conclude that among
agents with the same evidence and composite measure, there is no point in verifying the
composite measure of some agents with higher probability than others, as doing so does
not reduce incentives of others to misreport their type and makes the principal incur
higher than necessary verification costs.

Thus, we can restrict attention to mechanisms with Π(𝑒,𝑡) = Π(𝑒,𝑡′), 𝑇 (𝑒,𝑡) = 𝑇 (𝑒,𝑡′),
𝑃 ′(𝑒,𝑡,∅) = 𝑃 ′(𝑒,𝑡′,∅), and 𝑃 (𝑒,𝑡,𝑠) = 𝑃 (𝑒,𝑡′,𝑠) for every 𝑒,𝑡,𝑡′,𝑠 such that 𝜎(𝑒,𝑡) =
𝜎(𝑒,𝑡′).49 In other words, the principal can constrain attention to mechanisms that ask
agents only for evidence and a claim about their composite measure (rather than a whole
profile of talent dimensions). The principal designs a mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩, where
𝑇 : [0,1]𝑚+1 → [0,1] and 𝑃 : [0,1]𝑚+1 × ([0,1] ∪ {∅}) → [0,1]. Proposition 9 generalizes the
IC characterization of Proposition 1 to the case of (𝑚 + 𝑛)-dimensional screening.

Proposition 9. A mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩ is IC if and only if

(i) Π(𝑒,𝑠) is non-decreasing in 𝑠 over 𝑠 ∈ [𝜎(𝑒,0),𝜎(𝑒,1)] for every 𝑒 ∈ [0,1]𝑚,

(ii) Π(𝑒,𝑠) is non-decreasing in 𝑒 over 𝑒 ∈ {𝑒 ∈ [0,1]𝑚 : 𝜎(𝑒, 0) ≤ 𝑠 ≤ 𝜎(𝑒,1)} for every
𝑠 ∈ [0,1], and

(iii) (1 − 𝑇 (𝑒,𝑠))𝑃 (𝑒,𝑠,∅) ≤ Π(𝑒,𝜎(𝑒,0)) for every (𝑒,𝑠) ∈ [0,1]𝑚+1,

where Π(𝑒,𝑠) := (1 − 𝑇 (𝑒,𝑠))𝑃 (𝑒,𝑠,∅) + 𝑇 (𝑒,𝑠) is the probability with which agent an
agent is accepted if she truthfully reports her evidence 𝑒 and composite measure 𝑠.

The conditions are analogous to those of Proposition 1. Notice that there are no IC
conditions on the comparison between the values of 𝑇 , 𝑃 , or Π for agent types (𝑒,𝑡) and
(𝑒′,𝑡′) such that 𝑒 ̸≥ 𝑒′ and 𝑒 ̸≤ 𝑒′. That is, because neither agent type has the evidence
to imitate the other.

Lemma 8 generalizes Lemma 2, showing that we can constrain attention to mechanisms
that satisfy condition (iii) of Proposition 9 with equality.

Lemma 8. Given any IC mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩, there exists an IC mechanism 𝑀 ′ ≡
⟨𝑇 ′,𝑃 ′⟩ with (1 − 𝑇 ′(𝑒,𝑠))𝑃 ′(𝑒,𝑠,∅) = Π′(𝑒,𝜎(𝑒,0)) for every (𝑒,𝑠), 𝑠 ∈ [𝜎(𝑒,0),𝜎(𝑒,1)]

49That 𝑃 (𝑒,𝑡,𝑠) = 𝑃 (𝑒,𝑡′,𝑠) for every 𝑠 ∈ [0,1] when 𝜎(𝑒,𝑡) = 𝜎(𝑒,𝑡′) follows already from restricting
attention to threshold acceptance policies after verification.
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that is outcome-equivalent to 𝑀 and has at most as high verification costs as 𝑀 . For
𝑐 > 0, if also Π(𝑒,𝑠) > Π(𝑒,𝜎(𝑒,0)) for a positive measure of (𝑒,𝑠)’s, then 𝑀 ′ has lower
verification costs than 𝑀 .

Define ̃︀𝑓(𝑒,𝑠) :=
∫︀

𝑡∈[0,1]𝑛 I(𝜎(𝑒,𝑡) = 𝑠)𝑓(𝑒,𝑡)𝑑𝑡, the probability density of agents
with evidence 𝑒 and composite measure 𝑠, and ̃︀𝑢(𝑒,𝑠) := Et[𝑢(𝑒,𝑡)|𝜎(𝑒,𝑡) = 𝑠] =∫︀

t∈[0,1]𝑛 𝑢(e,t)I(𝜎(e,t) = 𝑠)𝑓(e,t)𝑑t/ ̃︀𝑓(𝑒,𝑠), the principal’s expected payoff from accepting
all agents with evidence 𝑒 and composite measure 𝑠. ̃︀𝑢(𝑒,𝑠) is assumed to be increasing in
𝑠.50 The principal’s objective function is

∫︀ 1
0 · · ·

∫︀ 1
0

∫︀ 𝜎(𝑒,1)
𝜎(𝑒,0) [Π(𝑒,𝑠)̃︀𝑢(𝑒,𝑠) − 𝑐𝑇 (𝑒,𝑠)] ̃︀𝑓(𝑒,𝑠)𝑑𝑠

𝑑𝑒1 · · · 𝑑𝑒𝑚. By Lemma 8, condition (iii) of Proposition 9 is satisfied with equality
by the optimal mechanism, so in the objective function we can substitute 𝑇 (𝑒,𝑠) =
Π(𝑒,𝑠) − Π(𝑒,𝜎(𝑒,0)). Then, the objective function reads

∫︁ 1

0
· · ·

∫︁ 1

0

∫︁ 𝜎(𝑒,1)

𝜎(𝑒,0)
[Π(𝑒,𝑠)(̃︀𝑢(𝑒,𝑠) − 𝑐) + 𝑐Π(𝑒,𝜎(𝑒,0))] ̃︀𝑓(𝑒,𝑠)𝑑𝑠𝑑𝑒1 · · · 𝑑𝑒𝑚, (11)

which is linear in Π, so by Bauer’s maximum principle, there exists an extreme Π—among
all Π that are non-decreasing in 𝑠 and 𝑒—that solves the principal’s problem.

Lemma 9. There exists an optimal deterministic mechanism.

B.1 Composite measure biased in favor of talent

The definition of a pro-𝑡 biased composite measure generalizes to the case of (𝑚 + 𝑛)-
dimensional screening as follows.

Definition 5. 𝜎 is pro-𝑡 biased if for every 𝑒,𝑒′ ∈ [0,1]𝑚 and every composite measure
𝑠 ∈ [max{𝜎(𝑒,0),𝜎(𝑒′,0)}, min{𝜎(𝑒,1),𝜎(𝑒′,1)}], if ̃︀𝑢(𝑒,𝑠) ≥ 𝑐 ≥ ̃︀𝑢(𝑒′,𝑠) with at least one
inequality holding strictly, then 𝑒′ ̸≥ 𝑒.

Generalizing Proposition 4, Proposition 10 derives the optimal mechanism under a
pro-𝑡 composite measure.

Proposition 10. If 𝜎 is pro-𝑡 biased, then there exists an optimal mechanism with
Π(𝑒,𝑠) = I(̃︀𝑢(𝑒,𝑠) ≥ 𝑐 or 𝑒 ∈ 𝐸*) and 𝑇 (𝑒,𝑠) = I(̃︀𝑢(𝑒,𝑠) ≥ 𝑐 and 𝑒 ̸∈ 𝐸*) for some upper
set 𝐸* of [0,1]𝑚 (i.e., 𝐸* ⊆ [0,1]𝑚 such that for any 𝑒 ∈ 𝐸* and 𝑒′ ∈ [0,1]𝑚, if 𝑒′ ≥ 𝑒, then
𝑒′ ∈ 𝐸*).51

50For (𝑒,𝑠) such that 𝑠 = 𝜎(𝑒,0), ̃︀𝑢(𝑒,𝑠) ≡ 𝑢(𝑒,0). ̃︀𝑢(𝑒,𝑠) being increasing in 𝑠 guarantees that the
indifference sets of the principal, 𝐼𝑢(𝑢) := {(𝑒,𝑠) ∈ [0,1]𝑚+1 : ̃︀𝑢(𝑒,𝑠) = 𝑢}, are 𝑚-dimensional, as assumed
in the case of 𝑚 = 𝑛 = 1. The results are still true with ̃︀𝑢(𝑒,𝑠) non-decreasing in 𝑠, which would somewhat
complicate the proofs.

51Clearly, if 𝑐 = 0, 𝐸* = ∅ without loss. If 𝑐 > 0, 𝐸* ⊃ {𝑒 ∈ [0,1]𝑚 : ̃︀𝑢(𝑒,𝜎(𝑒,0)) ≥ 𝑐}. This has to be
true, because among the agents who are accepted, an agent’s composite measure should be verified only
if this will prevent others from imitating her. Any agent who has enough evidence to imitate an agent
(𝑒,0) with ̃︀𝑢(𝑒,𝜎(𝑒,0)) > 𝑐 and get accepted also has composite measure at least as high as (𝑒,0) can.
Therefore, (𝑒,0)’s composite measure should not be verified if ̃︀𝑢(𝑒,𝜎(𝑒,0)) > 𝑐.
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B.2 Composite measure biased in favor of evidence

The definition of a pro-𝑒 biased composite measure generalizes to the case of (𝑚 + 𝑛)-
dimensional screening as follows.

Definition 6. 𝜎 is pro-𝑒 biased if for every 𝑒,𝑒′ ∈ [0,1]𝑚 and every composite measure
𝑠 ∈ [max{𝜎(𝑒,0),𝜎(𝑒′,0)}, min{𝜎(𝑒,1),𝜎(𝑒′,1)}], if ̃︀𝑢(𝑒,𝑠) ≥ 𝑐 ≥ ̃︀𝑢(𝑒′,𝑠) with at least one
inequality holding strictly, then 𝑒′ ≥ 𝑒.

Generalizing Proposition 5, Proposition 11 derives the optimal mechanism under a
pro-𝑒 biased composite measure.

Proposition 11. If 𝜎 is pro-𝑒 biased, then there exists an optimal mechanism with
Π(𝑒,𝑠) = I(𝑠 ≥ 𝑠* or 𝑒 ∈ 𝐸*) and 𝑇 (𝑒,𝑠) = I(𝑠 ≥ 𝑠* and 𝑒 ̸∈ 𝐸*) for some 𝑠* ∈ [0,1] and
some upper set 𝐸* of [0,1]𝑚.52

C Proofs of results in Appendix B

Proof of Lemma 6 Take any two agents (𝑒,𝑡) and (𝑒,𝑡′) with 𝜎(𝑒,𝑡) = 𝜎(𝑒,𝑡′). (𝑒,𝑡)’s
IC requires Π(𝑒,𝑡) ≥ Π(𝑒,𝑡′). (𝑒,𝑡′)’s IC requires Π(𝑒,𝑡′) ≥ Π(𝑒,𝑡). Q.E.D.

Proof of Lemma 7 Take any IC mechanism 𝑀 . Construct the mechanism 𝑀 ′ ≡ ⟨𝑇 ′,𝑃 ′⟩
with53

𝑇 ′(𝑒,𝑡) := inf
𝑡′ s.t. 𝜎(𝑒,𝑡′)=𝜎(𝑒,𝑡)

𝑇 (𝑒,𝑡) ≤ 𝑇 (𝑒,𝑡), and

𝑃 ′(𝑒,𝑡,∅) := Π(𝑒,𝑡) − 𝑇 ′(𝑒,𝑡)
1 − 𝑇 ′(𝑒,𝑡) ≥ Π(𝑒,𝑡) − 𝑇 (𝑒,𝑡)

1 − 𝑇 (𝑒,𝑡) = 𝑃 (𝑒,𝑡,∅)

for every (𝑒,𝑡). Then, Π′(𝑒,𝑡) = (1 − 𝑇 ′(𝑒,𝑡))𝑃 ′(𝑒,𝑡,∅) + 𝑇 ′(𝑒,𝑡) = Π(𝑒,𝑡) for every (𝑒,𝑡),
where the second equality follows by construction of 𝑀 ′. Thus, 𝑀 ′ is outcome-equivalent
to 𝑀 . Given that 𝑀 is IC, outcome-equivalence implies that under 𝑀 ′, no agent has
incentives to imitate an agent with composite measure that is not higher than their own.

It remains to show that under mechanism 𝑀 ′, no agent has incentives to imitate an
agent with higher composite measure than her own. Take any agent (𝑒,𝑡), evidence 𝑒′ ≤ 𝑒,
and talent 𝑡′. It holds that

Π′(𝑒,𝑡) = Π(𝑒,𝑡) ≥ sup
𝑡 s.t. 𝜎(𝑒′,𝑡)=𝜎(𝑒′,𝑡′)

{︁
(1 − 𝑇 (𝑒′,𝑡))𝑃 (𝑒′,𝑡,∅)

}︁
= sup

𝑡 s.t. 𝜎(𝑒′,𝑡)=𝜎(𝑒′,𝑡′)

{︁
Π(𝑒′,𝑡) − 𝑇 (𝑒′,𝑡)

}︁
52If 𝑐 > 0, then 𝐸* ⊃ {𝑒 ∈ [0,1]𝑚 : ̃︀𝑢(𝑒,𝜎(𝑒,0)) > 𝑠*}, because among the agents who are accepted, an

agent’s composite measure should be verified only if this will prevent others from imitating her.
53For 𝑒 such that inf𝑡′ s.t. 𝜎(𝑒,𝑡′)=𝜎(𝑒,𝑡) 𝑇 (𝑒,𝑡) = 1, set 𝑃 ′(𝑒,𝑡,∅) = 𝑃 (𝑒,𝑡,∅).
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= Π(𝑒′,𝑡′) + sup
𝑡 s.t. 𝜎(𝑒′,𝑡)=𝜎(𝑒′,𝑡′)

{︁
−𝑇 (𝑒′,𝑡)

}︁
= Π(𝑒′,𝑡′) − inf

𝑡 s.t. 𝜎(𝑒′,𝑡)=𝜎(𝑒′,𝑡′)
𝑇 (𝑒′,𝑡)

= Π′(𝑒′,𝑡′) − 𝑇 ′(𝑒′,𝑡′) = (1 − 𝑇 ′(𝑒′,𝑡′))𝑃 ′(𝑒′,𝑡′,∅),

where (i) the first equality follows by construction of 𝑀 ′, (ii) the inequality by IC of 𝑀 ,
(iii) the second equality by definition of Π, (iv) the third equality by Lemma 6 and IC
of 𝑀 , which together imply that Π(𝑒′,𝑡) = Π(𝑒′,𝑡′) for every 𝑡 such that 𝜎(𝑒′,𝑡) = 𝑠, (v)
the fifth inequality by construction of 𝑀 ′, and the final equality by definition of Π′. We
have thus shown that for any agent (𝑒,𝑡), Π′(𝑒,𝑡) ≥ (1 − 𝑇 ′(𝑒′,𝑡′))𝑃 ′(𝑒′,𝑡′,∅) for every
(𝑒′,𝑡′) ≤ (𝑒,1), so under mechanism 𝑀 ′, no agent has incentives to imitate an agent with
higher composite measure than her own.

For 𝑐 > 0, 𝑀 ′ also minimizes verification costs. Q.E.D.

Proof of Proposition 9 The proof proceeds like the proof of Proposition 1 and is thus
omitted. Q.E.D.

Proof of Lemma 8 The proof proceeds like the proof of Lemma 2.
Take any IC mechanism 𝑀 ≡ ⟨𝑇,𝑃 ⟩. Condition (iii) of Proposition 9 says that

Π(𝑒,𝜎(𝑒,0)) ≥ (1 − 𝑇 (𝑒,𝑠))𝑃 (𝑒,𝑠,∅) for any (𝑒,𝑠). Then, construct the mechanism
𝑀 ′ := ⟨𝑇 ′,𝑃 ′⟩ with54

𝑇 ′(𝑒,𝑠) := Π(𝑒,𝑠) − Π(𝑒,𝜎(𝑒,0)) = (1 − 𝑇 (𝑒,𝑠))𝑃 (𝑒,𝑠,∅) + 𝑇 (𝑒,𝑠) − Π(𝑒,𝜎(𝑒,0))

≤ Π(𝑒,𝜎(𝑒,0)) + 𝑇 (𝑒,𝑠) − Π(𝑒,𝜎(𝑒,0)) = 𝑇 (𝑒,𝑠), and

𝑃 ′(𝑒,𝑠,∅) := Π(𝑒,𝜎(𝑒,0))
1 − Π(𝑒,𝑠) + Π(𝑒,𝜎(𝑒,0)) ≥ (1 − 𝑇 (𝑒,𝑠))𝑃 (𝑒,𝑠,∅)

1 − Π(𝑒,𝑠) + (1 − 𝑇 (𝑒,𝑠))𝑃 (𝑒,𝑠,∅) = 𝑃 (𝑒,𝑠,∅)

for every (𝑒,𝑠), where the inequalities follow from Π(𝑒,𝜎(𝑒,0)) ≥ (1 − 𝑇 (𝑒,𝑠))𝑃 (𝑒,𝑠,∅).
By construction we have that Π′(𝑒,𝑠) = Π(𝑒,𝑠) for every (𝑒,𝑠), so 𝑀 ′ satisfies conditions

(i) and (ii) of Proposition 1. By construction, we also have that for every (𝑒,𝑠)

Π′(𝑒,𝜎(𝑒,0)) = Π(𝑒,𝜎(𝑒,0)) = (1 − 𝑇 ′(𝑒,𝑠))𝑃 ′(𝑒,𝑠,∅),

so 𝑀 ′ also satisfies condition (iii) of Proposition 1. Therefore, 𝑀 ′ is IC.
Last, to see why the second part is true, notice that for 𝑐 > 0, 𝑀 ′ saves on verification

costs compared to 𝑀 if there exists (a positive measure of) (𝑒,𝑠) with 𝑃 (𝑒,𝑠,∅)(1 −
𝑇 (𝑒,𝑠)) < Π(𝑒,𝜎(𝑒,0)), since 𝑇 ′(𝑒,𝑠) < 𝑇 (𝑒,𝑠) for such (𝑒,𝑠). Q.E.D.

54For (𝑒,𝑠) such that Π(𝑒,𝑠) = 1 and Π(𝑒,𝜎(𝑒,0)) = 0, set 𝑃 ′(𝑒,𝑠,∅) = 0.
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Proof of Proposition 10 Let 𝑀 ≡ ⟨𝑇,𝑃 ⟩ be an optimal deterministic mechanism with
Π(𝑒,𝑠) ≡ (1 − 𝑇 (𝑒,𝑠))𝑃 (𝑒,𝑠,∅) + 𝑇 (𝑒,𝑠). Define 𝐸* := {𝑒 ∈ [0,1]𝑚 : Π(𝑒,𝜎(𝑒,0)) = 1}
(so Π(𝑒,𝜎(𝑒,0)) = 0 for every 𝑒 ̸∈ 𝐸*). Given that 𝑀 is IC, conditions (i) and (ii) of
Proposition 9 combined imply that 𝐸* is an upper set of [0,1]𝑚. To see this, take any 𝑒 ∈ 𝐸*

and any 𝑒′ ∈ [0,1]𝑚. If 𝑒′ ≥ 𝑒, then Π(𝑒′,𝜎(𝑒′,0)) ≥ Π(𝑒,𝜎(𝑒′,0)) ≥ Π(𝑒,𝜎(𝑒,0)) = 1, so
Π(𝑒′,𝜎(𝑒′,0)) = 1 and thus 𝑒′ ∈ 𝐸*. The first inequality follows from condition (ii) and
𝑒′ ≥ 𝑒. The second inequality follows from condition (i), 𝑒′ ≥ 𝑒, and 𝜎 being increasing.55

Also, condition (i) of Proposition 9 implies that Π(𝑒,𝑠) = 1 for every 𝑒 ∈ 𝐸* and every
𝑠 ∈ [0,1]. Then, the principal’s objective function (11) can be written as

∫︁
𝑒∈𝐸*

∫︁ 𝜎(𝑒,1)

𝜎(𝑒,0)
̃︀𝑢(𝑒,𝑠) ̃︀𝑓(𝑒,𝑠)𝑑𝑠𝑑𝑒 +

∫︁
𝑒 ̸∈𝐸*

∫︁ 𝜎(𝑒,1)

𝜎(𝑒,0)
[Π(𝑒,𝑠)(̃︀𝑢(𝑒,𝑠) − 𝑐)] ̃︀𝑓(𝑒,𝑠)𝑑𝑠𝑑𝑒.

The first term depends on the mechanism 𝑀 only through 𝐸*. The second term depends on
the mechanism 𝑀 only through the values of Π for 𝑒 ̸∈ 𝐸*. Setting Π(𝑒,𝑠) = I(̃︀𝑢(𝑒,𝑠) > 𝑐)
for every 𝑒 ̸∈ 𝐸* maximizes the second term. It is also IC.

To show this, we first prove that Π(𝑒,𝑠) = I(̃︀𝑢(𝑒,𝑠) > 𝑐 or 𝑒 ∈ 𝐸*) satisfies condition
(i) of Proposition 9. Take any 𝑒,𝑠,𝑠′ with 𝑠′ > 𝑠. It suffices to show that Π(𝑒,𝑠′) = 0
implies Π(𝑒,𝑠) = 0. If Π(𝑒,𝑠′) = 0, then ̃︀𝑢(𝑒,𝑠′) < 𝑐 and 𝑒 ̸∈ 𝐸*. Since ̃︀𝑢(𝑒,𝑠) is increasing
in 𝑠, ̃︀𝑢(𝑒,𝑠) < ̃︀𝑢(𝑒,𝑠′) < 𝑐. Therefore, Π(𝑒,𝑠) = 0.

It remains to show that Π(𝑒,𝑠) = I(̃︀𝑢(𝑒,𝑠) ≥ 𝑐 or 𝑒 ∈ 𝐸*) satisfies condition (ii)
of Proposition 9. Take any 𝑒,𝑒′,𝑠 with 𝑒′ ≥ 𝑒. We need to show that Π(𝑒′,𝑠) = 0
implies Π(𝑒,𝑠) = 0. If Π(𝑒′,𝑠) = 0, then ̃︀𝑢(𝑒′,𝑠) < 𝑐 and 𝑒′ ̸∈ 𝐸*. It follows then that
𝑒 ̸∈ 𝐸*, since 𝐸* is an upper set of [0,1]𝑚, 𝑒′ ≥ 𝑒, and 𝑒′ ̸∈ 𝐸*. It remains to show that̃︀𝑢(𝑒,𝑠) < 𝑐. We will show this by contradiction. Assume that ̃︀𝑢(𝑒,𝑠) ≥ 𝑐. Then, we have
that ̃︀𝑢(𝑒,𝑠) ≥ 𝑐 > ̃︀𝑢(𝑒′,𝑠), which, given that 𝜎 is pro-𝑡 biased, implies that 𝑒′ ̸≥ 𝑒, a
contradiction. Q.E.D.

Proof of Proposition 11 Let 𝑀 ≡ ⟨𝑇,𝑃 ⟩ be an optimal deterministic mechanism with
Π(𝑒,𝑠) ≡ (1 − 𝑇 (𝑒,𝑠))𝑃 (𝑒,𝑠,∅) + 𝑇 (𝑒,𝑠). Define 𝐸* := {𝑒 ∈ [0,1]𝑚 : Π(𝑒,𝜎(𝑒,0)) = 1}
(so Π(𝑒,𝜎(𝑒,0)) = 0 for every 𝑒 ̸∈ 𝐸*). Given that 𝑀 is IC, conditions (i) and (ii) of
Proposition 9 combined imply that 𝐸* is an upper set of [0,1]𝑚.

Also, condition (i) of Proposition 9 implies that Π(𝑒,𝑠) = 1 for every 𝑒 ∈ 𝐸* and every
𝑠 ∈ [0,1]. Then, the principal’s objective function (11) can be written as

∫︁
𝑒∈𝐸*

∫︁ 𝜎(𝑒,1)

𝜎(𝑒,0)
̃︀𝑢(𝑒,𝑠) ̃︀𝑓(𝑒,𝑠)𝑑𝑠𝑑𝑒 +

∫︁
𝑒 ̸∈𝐸*

∫︁ 𝜎(𝑒,1)

𝜎(𝑒,0)
[Π(𝑒,𝑠)(̃︀𝑢(𝑒,𝑠) − 𝑐)] ̃︀𝑓(𝑒,𝑠)𝑑𝑠𝑑𝑒.

The first term depends on the mechanism 𝑀 only through 𝐸*. The second term depends
55If 𝜎(𝑒′,0) > 𝜎(𝑒,1), then Π(𝑒,𝜎(𝑒′,0)) is not well-defined (since there is no agent with evidence 𝑒 and

composite measure 𝜎(𝑒′,0)) but the inequalities still follow if we use conditions (i) and (ii) iteratively.
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on the mechanism 𝑀 only through the values of Π for 𝑒 ̸∈ 𝐸*.
Take any (𝑒,𝑠),(𝑒′,𝑠′) ∈ 𝐼̃︀𝑢(𝑐) ∖ 𝐸* with 𝑠 ̸= 𝑠′. That (𝑒,𝑠),(𝑒′,𝑠′) ∈ 𝐼̃︀𝑢(𝑐) means that̃︀𝑢(𝑒,𝑠) = ̃︀𝑢(𝑒′,𝑠′) = 𝑐. First, we show that if 𝑒′ ̸≥ 𝑒, then 𝑠′ < 𝑠. Let 𝑒′ ̸≥ 𝑒:
Case 1 : if 𝑠′ ∈ [𝜎(𝑒,0),𝜎(𝑒,1)], then 𝜎 being pro-𝑒 biased implies that ̃︀𝑢(𝑒,𝑠′) ≤ 𝑐.

To see this, notice that if instead ̃︀𝑢(𝑒,𝑠′) > 𝑐, then we would have ̃︀𝑢(𝑒,𝑠′) > 𝑐 = ̃︀𝑢(𝑒′,𝑠′),
so the composite measure being pro-𝑒 biased would imply that 𝑒′ ≥ 𝑒, a contradiction.
We then have that ̃︀𝑢(𝑒,𝑠′) ≤ 𝑐 = ̃︀𝑢(𝑒,𝑠). Particularly, ̃︀𝑢(𝑒,𝑠′) < 𝑐 = ̃︀𝑢(𝑒,𝑠), becausẽ︀𝑢(𝑒,𝑠′) = ̃︀𝑢(𝑒,𝑠) = ̃︀𝑢(𝑒′,𝑠′) = 𝑐 is not possible by the Regularity Assumption. Given that̃︀𝑢(𝑒,𝑠) is non-decreasing in 𝑠, ̃︀𝑢(𝑒,𝑠′) < 𝑐 = ̃︀𝑢(𝑒,𝑠) implies that 𝑠′ < 𝑠.

Case 2 : if 𝑠′ < 𝜎(𝑒,0), then since 𝑠 ∈ [𝜎(𝑒,0),𝜎(𝑒,1)], it follows that 𝑠′ < 𝑠.
Case 3a: if 𝑠′ > 𝜎(𝑒,1) and 𝜎(𝑒,1) ∈ [𝜎(𝑒′,0),𝜎(𝑒′,1)], then because 𝜎(𝑒,1) ≥ 𝑠 and̃︀𝑢(𝑒,𝑠) is non-decreasing in 𝑠, it follows that ̃︀𝑢(𝑒,𝜎(𝑒,1)) ≥ ̃︀𝑢(𝑒,𝑠) = 𝑐. Thus, we havẽ︀𝑢(𝑒,𝜎(𝑒,1)) ≥ 𝑐 = ̃︀𝑢(𝑒′,𝑠′) ≥ ̃︀𝑢(𝑒′,𝜎(𝑒,1)) with at least one inequality holding strictly (for

otherwise ̃︀𝑢(𝑒,𝜎(𝑒,1)) = ̃︀𝑢(𝑒′,𝜎(𝑒,1)) = ̃︀𝑢(𝑒′,𝑠′) = 𝑐 with 𝑠′ ̸= 𝜎(𝑒,1) and 𝑒 ̸= 𝑒′, which is
not possible by the Regularity Assumption), so the composite measure being pro-𝑒 implies
that 𝑒′ ≥ 𝑒, a contradiction. Therefore, Case 3a is impossible.

Case 3b: if 𝑠′ > 𝜎(𝑒,1) and 𝜎(𝑒,1) < 𝜎(𝑒′,0), then by continuity and monotonicity of
𝜎 and because 𝜎(𝑒,1) ∈ [𝜎(0,0),𝜎(𝑒′,0)) there exists 𝑒′′ ≤ 𝑒′ such that 𝜎(𝑒′′,0) = 𝜎(𝑒,1).
We have then that

̃︀𝑢(𝑒,𝜎(𝑒,1)) ≥ ̃︀𝑢(𝑒,𝑠) = 𝑐 = ̃︀𝑢(𝑒′,𝑠′) ≥ min
𝑡:𝜎(𝑒′,𝑡)=𝑠′

𝑢(𝑒′,𝑡)

= 𝑢(𝑒′, arg min
𝑡:𝜎(𝑒′,𝑡)=𝑠′

𝑢(𝑒′,𝑡)) ≥ 𝑢(𝑒′′, arg min
𝑡:𝜎(𝑒′,𝑡)=𝑠′

𝑢(𝑒′,𝑡)) ≥ 𝑢(𝑒′′, 0)

= Et [𝑢(𝑒′′,𝑡)|𝜎(𝑒′′,𝑡) = 𝜎(𝑒′′,0)] ≡ ̃︀𝑢(𝑒′′,𝜎(𝑒′′,0)) = ̃︀𝑢(𝑒′′,𝜎(𝑒,1))

with at least one inequality holding strictly. The first line follows because 𝜎(𝑒,1) ≥ 𝑠,̃︀𝑢(𝑒,𝑠) is non-decreasing in 𝑠, (𝑒,𝑠),(𝑒′,𝑠′) ∈ 𝐼̃︀𝑢(𝑐), and ̃︀𝑢(𝑒′,𝑠′) ≡ Et[𝑢(𝑒′,𝑡)|𝜎(𝑒′,𝑡) = 𝑠′] ≥
min𝑡:𝜎(𝑒′,𝑡)=𝑠′ 𝑢(𝑒′,𝑡). The second line follows because 𝑒′ ≥ 𝑒′′, arg min𝑡:𝜎(𝑒′,𝑡)=𝑠′ 𝑢(𝑒′,𝑡) ≥ 0,
and 𝑢 is non-decreasing. The third line follows because, given that 𝜎 is increasing, the
only value of 𝑡 that makes 𝜎(𝑒′′,𝑡) = 𝜎(𝑒′′,0) is 𝑡 = 0; also, 𝜎(𝑒′′,0) = 𝜎(𝑒,1).

Case 3c: if 𝑠′ > 𝜎(𝑒,1) and 𝜎(𝑒,1) > 𝜎(𝑒′,1), then we arrive at a contradiction since
𝑠′ > 𝜎(𝑒′,1) is not possible. Thus, Case 3c is impossible.

We have thus shown that for any (𝑒,𝑠),(𝑒′,𝑠′) ∈ 𝐼̃︀𝑢(𝑐) ∖ 𝐸* with 𝑠 ̸= 𝑠′, if 𝑒′ ̸≥ 𝑒, then
𝑠′ < 𝑠. This is equivalent to its contrapositive: for any (𝑒,𝑠),(𝑒′,𝑠′) ∈ 𝐼̃︀𝑢(𝑐) ∖ 𝐸*, if 𝑠′ > 𝑠,
then 𝑒′ ≥ 𝑒. Therefore, by conditions (i) and (ii) of Proposition 9, there exists 𝑠* ∈ [0,1]
such that for any (𝑒,𝑠) ∈ 𝐼̃︀𝑢(𝑐) ∖ 𝐸*, Π(𝑒,𝑠) = I(𝑠 ≥ 𝑠*).

It remains to find the values for (𝑒,𝑠) ̸∈ 𝐼̃︀𝑢(𝑐) ∪ 𝐸*. Take any (𝑒,𝑠) in 𝐼̃︀𝑢(𝑐) ∪ 𝐸*.
Case 1: If ̃︀𝑢(𝑒*,𝑠) = 𝑐 for some 𝑒* such that 𝑠 ∈ [𝜎(𝑒*,0),𝜎(𝑒*,1)], then
Case 1a: if ̃︀𝑢(𝑒,𝑠) < 𝑐 and 𝑠 ≥ 𝑠*, then ̃︀𝑢(𝑒*,𝑠) = 𝑐 > ̃︀𝑢(𝑒,𝑠), so because 𝜎 is
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pro-𝑒 biased, 𝑒 ≥ 𝑒*, and thus IC condition (ii) of Proposition 9 requires that Π(𝑒,𝑠) ≥
Π(𝑒*,𝑠) = 1, which implies Π(𝑒,𝑠) = 1.

Case 1b: If ̃︀𝑢(𝑒′,𝑠) > 𝑐 and 𝑠 < 𝑠*, then ̃︀𝑢(𝑒,𝑠) > 𝑐 = ̃︀𝑢(𝑒*,𝑠), so because 𝜎 is
pro-𝑒 biased, 𝑒* ≥ 𝑒, and thus IC condition (ii) of Proposition 9 requires that Π(𝑒,𝑠) ≤
Π(𝑒*,𝑠) = 0, which implies Π(𝑒,𝑠) = 0.

Case 1c: If ̃︀𝑢(𝑒,𝑠) < 𝑐 and 𝑠 < 𝑠*, then set Π(𝑒,𝑠) = 0, which is what the principal
would ideally want to do with (𝑒,𝑠) if he was not constrained by IC.

Case 1d: If ̃︀𝑢(𝑒,𝑠) > 𝑐 and 𝑠 ≥ 𝑠*, then set Π(𝑒,𝑠) = 1, which is what the principal
would ideally want to do with (𝑒,𝑠) if he was not constrained by IC.

Case 2: If ̃︀𝑢(𝑒′,𝑠) < 𝑐 for every 𝑒′ such that 𝑠 ∈ [𝜎(𝑒′,0),𝜎(𝑒′,1)], then it is easy to see
that 𝑠 < 𝑠*. Set Π(𝑒,𝑠) = 0, which is what the principal would ideally want to do with
(𝑒,𝑠) if he was not constrained by IC.

Case 3: If ̃︀𝑢(𝑒′,𝑠) > 𝑐 for every 𝑒′ such that 𝑠 ∈ [𝜎(𝑒′,0),𝜎(𝑒′,1)], then it is easy to see
that 𝑠 ≥ 𝑠*. Set Π(𝑒,𝑠) = 1, which is what the principal would ideally want to do with
(𝑒,𝑠) if he was not constrained by IC.

Putting all the above cases together, we get that for (𝑒,𝑠) ̸∈ 𝐼̃︀𝑢(𝑐) ∪ 𝐸*, Π(𝑒,𝑠) =
I(𝑠 ≥ 𝑠*). Combining this with the fact that for any (𝑒,𝑠) ∈ 𝐼̃︀𝑢(𝑐) ∖ 𝐸*, Π(𝑒,𝑠) = I(𝑠 ≥ 𝑠*)
and given the definition of 𝐸*, we get that for any (𝑒,𝑠) such that 𝑠 ∈ [𝜎(𝑒,0),𝜎(𝑒,1)],
Π(𝑒,𝑠) = I(𝑠 ≥ 𝑠* or 𝑒 ∈ 𝐸*). To conclude the proof, notice that Π satisfies conditions (i)
and (ii) of Proposition 9, and is thus IC. Therefore, by solving a relaxed problem when
ignoring the IC constraints in cases 1c, 1d, 2, and 3, we have also solved the original
problem. Q.E.D.
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