
Regret, blame, and division of responsibility in games∗

Click to access latest version

Orestis Vravosinos†

May 12, 2025

Abstract

Although a powerful emotion affecting behavior, our understanding of regret in
strategic interactions is limited. I argue that because responsibility is central in
the experience of regret but also divided among players in games, people expe-
rience regret differently in games than in individual decision-making. I provide
experimental evidence that, indeed, a player 𝑖’s regret (for not best-responding) is
mitigated through blame put on another player 𝑗 for not playing—when available—a
Pareto-improving (compared to 𝑗’s actual action) best-response to player 𝑖’s action.
Remarkably, the tendency to blame elicited through survey responses in certain
games predicts behavior in vastly different games.
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[T]he intensity of regret depends on more than a simple comparison of ‘what is’ and
‘what might have been’. It may depend also on the extent to which the individual blames
himself for his original decision. [. . . ] [T]he neglect of this dimension of regret—although a
useful simplifying assumption for many problems—is a serious obstacle to the development
and generalisation of regret theory. - Sugden (1985)

1 Introduction

Regret theory has been a prominent model in decision theory since its formulation by
Loomes and Sugden (1982) and Bell (1982). It poses that people choose between risky
alternatives anticipating and trying to mitigate the regret that their choice may generate
once the initially unknown state of the world is revealed.1 Indeed, regret—be it anticipated
or realized—has been shown to play an important role in investment behavior (Lin et al.,
2006; Fogel and Berry, 2006; Huang and Zeelenberg, 2012; Frydman and Camerer, 2016;
Fioretti et al., 2022), health decisions (Koch, 2014; Brewer et al., 2016), gambling and
choice between lotteries (Loomes and Sugden, 1987; Zeelenberg et al., 1996; Zeelenberg,
1999; Sheeran and Orbell, 1999; Wolfson and Briggs, 2002; van de Ven and Zeelenberg,
2011; Araujo et al., ming), as well as bidding in auctions (Engelbrecht-Wiggans, 1989;
Engelbrecht-Wiggans and Katok, 2007, 2008, 2009; Greenleaf, 2004; Filiz-Ozbay and
Ozbay, 2007, 2010; Ratan and Wen, 2016).

Despite the significant impact of regret on decision-making, little is known about how
strategic—as opposed to single-agent—environments mediate the experience of regret,
thereby shaping behavior. When introduced in games, a player’s regret has so far been
analyzed as if in a single-agent context with the other players’ actions treated as the state
of the world. I call this the single-agent regret approach. This approach has helped explain
behavior in auctions (Engelbrecht-Wiggans, 1989; Engelbrecht-Wiggans and Katok, 2007,
2008, 2009; Greenleaf, 2004; Filiz-Ozbay and Ozbay, 2007, 2010; Ratan and Wen, 2016),
the ultimatum game (Zeelenberg and Beattie, 1997), price competition (Renou and Schlag,
2010), the traveler’s dilemma, centipede game, and asymmetric matching pennies (Halpern
and Pass, 2012).

However, responsibility is central in the experience of regret but at the same time
divided among players in games, which can make people experience regret differently in
games than in individual decision-making. In the latter case, an outcome is exclusively
the result of the agent’s decision and “luck” (i.e., the initially unknown state of the world).
On the other hand, in a game, the outcome is the result of the interaction of multiple
agents; the other players’ actions are not an impersonal, random state of the world but

1In the psychology literature, the importance of regret in decision-making has been discussed since at
least Festinger (1964). A notion of regret can even be traced back to Savage’s (1951) minimax (regret)
principle, according to which an agent chooses the alternative that minimizes her maximum possible
regret.
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rather choices of real agents.2 In such a setting, an agent may not experience feelings of
regret in the same way or degree, as she may feel less responsible for the combined result
of all the players’ actions. Therefore, it is natural to study how regret and the division of
responsibility jointly shape behavior in games.

To this end, I propose the strategic regret approach. This approach views anticipated
regret as mediated by the division of responsibility among players for the outcome of
a game. In this perspective, blame put on another player mitigates one’s own regret
and self-blame. I build a simple model to derive testable predictions about how people
experience regret and assign responsibility in strategic environments, and, in turn, how
this affects their behavior. I then proceed to experimentally test these predictions. I show
that, if appropriately adjusted to strategic environments, regret can provide novel insights,
which are supported by the experimental results.

I model regret and blame in two-player games in the following way. When player 𝑖

(she) has not best-responded to player 𝑗’s (he) action, the former tends to experience
regret. However, in cases where player 𝑗 has had available but did not play a best-response
(to player 𝑖’s chosen action) which if chosen would have also benefited player 𝑖, then player
𝑖’s regret is mitigated through blame put on player 𝑗 for not playing that best-response.

To see how strategic regret can affect behavior, consider the stag hunt game shown
below:

stag hare
stag 1,1 −𝜆,0
hare 0, − 𝜆 0,0

where 𝜆 > 0.3 Suppose that player 𝑖 plays stag while player 𝑗 plays hare. In that
case, given 𝑖’s action, 𝑗 could have best-responded by playing stag, causing a Pareto
improvement. Thus, the tendency to blame the other player reduces the intensity with
which 𝑖 may regret playing stag. On the other hand, player 𝑗 regrets not playing stag but
has nothing to blame player 𝑖 for. Therefore, the propensity to blame makes stag more
attractive by reducing the intensity of regret that it might generate while not affecting
the magnitude of regret that hare might cause.

Although the idea that another player’s responsibility mitigates one’s regret and
self-blame is intuitive,4 an exhaustive and exact description of all situations where a

2Indeed, in Lagnado and Channon’s (2008) experiments, participants rated intentional actions as more
causal and more blameworthy than physical events. “Luck” can also be a factor in games, but I restrict
attention to games without chance moves.

3The game is studied in detail in section 3.
4It is also consistent with the decision justification (Connolly and Zeelenberg, 2002) and regret regulation

(Zeelenberg and Pieters, 2007) theories suggesting that regret intensity is affected by justifications and
feelings of self-blame. There has been substantive evidence in favor of these theories showing that regret
intensity increases with the feeling of responsibility for having made a wrong decision (e.g., Zeelenberg
et al., 1998; Inman and Zeelenberg, 2002; Pieters and Zeelenberg, 2005). At the same time, the assumption
is consistent with the finding that regret mitigation due to diffusion of responsibility is a motive for people
to make collective decisions (El Zein et al., 2019).
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player assigns regret-mitigating blame to another is not as obvious. However, the model
still manages to deliver valuable new insights. In fact, as a first step in developing the
concept of strategic regret, the main purpose of this paper is not to prove that the exact
formulation of strategic regret that I propose is the only reasonable or definitive one.
Rather, the primary goal of the paper is to show how a behaviorally plausible and simple
formulation of strategic regret (i) differs from other models, particularly single-agent regret
and standard social preferences, and (ii) can explain patterns of behavior that cannot be
explained by those other models.

Among existing models, this formulation of strategic regret can uniquely explain
existing experimental results. In a stag hunt game, Bolton et al. (2016) find that—holding
fixed the probability with which the opponent plays stag—participants are more willing
to play stag when they play against another person compared to when the other player’s
action is randomly chosen by the computer. Namely, the maximum probability with which
the opponent can play hare with a participant still willing to play stag is (on average)
lower when the opponent is a human than when it is a computer playing on behalf of a
human. Strategic regret explains this finding as follows: a person that plays stag (i) may,
in the former case, blame the other player (and regret less herself) if he does not also play
stag, but (ii) cannot blame the computer in the latter case. Thus, stag is more attractive
in the former case. To the best of my knowledge, no other model has been proposed that
explains this finding.5

The ability to uniquely explain Bolton et al.’s (2016) finding serves as evidence in
favor of strategic regret. I use a novel experimental design to offer additional evidence. In
the experiment, participants were asked to answer questions that measure the intensity of
their regret and blame in hypothetical scenarios where they have played certain games
and specific outcomes have materialized. Their answers to these survey questions reveal
that, as strategic regret predicts, subjects blame the other side more and regret less when
the other side has had available a Pareto-improving best-response than when not. Also,
participants who blame more regret less, which indicates that blame assigned to the
opponent indeed mitigates one’s own regret.

However, measures of regret and blame based on survey questions may not necessarily
imply that subjects anticipate regret and blame or that they take them into account when
making strategic decisions. The second part of the experiment aims to argue that this is
the case by showing that unincentivized survey answers predict incentivized play. In this
part of the experiment, subjects played games commonly used in economics. Consistent
with strategic regret predictions, subjects with stronger tendency to blame (as measured
by their answers to the survey questions) the other player and regret less themselves (i)

5Strategic regret also brings equilibrium predictions closer to experimental results in the traveler’s
dilemma introduced by Basu (1994) and in the Kreps game (Kreps, 1989; Goeree and Holt, 2001). The
traveler’s dilemma is studied in detail in sections 3 and Appendix A.2, while the Kreps game is studied in
Appendix A.3.
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were more likely to play stag in the stag hunt game and (ii) chose higher numbers in the
traveler’s dilemma.6 Perhaps the most striking part of this result is that although the
subjects’ tendency to blame (and thus, regret less) was elicited through survey responses in
games vastly different from the traveler’s dilemma and the stag hunt game, these responses
have predictive power over the participants’ incentivized play in those two games.

Nevertheless, blame is assigned to another player for not playing a Pareto-improving
best-response, which suggests that a player takes into consideration both players’ payoffs.
Thus, participants with stronger tendency to blame may, for example, also be more
altruistic. In that case, the predictive power of the propensity to blame over behavior in
the traveler’s dilemma and stag hunt game could be partly due to altruism, which—like the
propensity to blame—should make people (i) more likely to play stag and (ii) choose higher
numbers in the traveler’s dilemma.7 The experimental results discount this alternative
explanation; here is how. In the experiment, apart from the stag hung game and the
traveler’s dilemma, subjects also played the public goods game, prisoner’s dilemma, and
dictator game. More altruistic participants should (i) give more in the dictator game,
(ii) be more likely to cooperate in the prisoner’s dilemma, and (iii) contribute more in
the public goods game. On the other hand, these predictions should not hold about
participants with higher propensity to blame, given that in these three games, a Pareto-
improving best-response never exists, so there is in theory no scope for regret-mitigating
blame. I show that, indeed, a stronger tendency to blame (as measured by the survey)
is not found to predict (i) more giving in the dictator game, (ii) a higher likelihood to
cooperate in the prisoner’s dilemma, or (iii) a larger contribution in the public goods game.
This indicates that the survey measure of the tendency to blame does not conflate blame
with standard social preferences. Strategic regret is distinct from standard other-regarding
preferences and can explain patterns of behavior that they cannot.

The plan of the paper is as follows. After a discussion of related literature, section 2
presents the model, and section 3 derives comparative statics predictions. Based on these,
section 4 presents the experimental design and results. Section 5 concludes. Appendix A
discusses extensions of the model and presents additional results. Appendix B presents
supplementary analyses of the experimental data. Appendices C and D document the
experimental procedure. Appendix E derives theoretical results under weaker assumptions.

6In the traveler’s dilemma, two players simultaneously choose an integer (i.e., amount of money) each
from a certain (exogenous) range. Then, each player receives the lowest of the two amounts, and, if the
two chosen numbers differ, the player that has announced the lower (resp. higher) number of the two
receives a bonus (resp. penalty), whose value is higher than 1. Suppose that player 𝑗 selects a significantly
lower number than player 𝑖. The regret of player 𝑖 (for not undercutting player 𝑗) is mitigated because
what happened is partly player 𝑗’s fault. Player 𝑗 could have best-responded by undercutting player
𝑖’s number by exactly one, causing a Pareto improvement. On the other hand, player 𝑗 regrets not
undercutting player 𝑖 by exactly one but has nothing to blame player 𝑖 for. Thus, the propensity to blame
tends to make players choose higher numbers.

7Even if this was the case, remember that unlike strategic regret, standard other-regarding preferences
cannot explain Bolton et al.’s (2016) finding.
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The proofs of all results are gathered in Appendix F.

Related literature. Several papers have considered regret in games. Renou and Schlag
(2010) and Yang and Pu (2012) study minimax regret equilibria, while Halpern and Pass
(2012) develop an alternative regret-based solution concept, iterated regret minimization.
García-Pola (2020) combines regret minimization with level-𝑘 reasoning. Other papers
have incorporated regret to study behavior in specific settings. Linhart and Radner
(1989), Engelbrecht-Wiggans (1989), Engelbrecht-Wiggans and Katok (2007, 2008, 2009),
Greenleaf (2004), Filiz-Ozbay and Ozbay (2007), and Ratan and Wen (2016) incorporate
regret in bilateral bargaining and auctions. Zeelenberg and Beattie (1997) find evidence
of regret aversion in the ultimatum game. Namely, proposers who expected to receive
feedback on the responder’s minimum acceptable offer made lower offers compared to
proposers who did not anticipate such feedback.

Accounting for how blame and the division of responsibility affect behavior in games
by mitigating regret is the main contribution of this paper. Neither theoretical nor
experimental work has previously considered this, although people are often more than
willing to blame others and avoid responsibility. For example, to avoid blame when
choosing for others, they make choices close to the individual preferences of the majority
(Eijkelenboom et al., 2019). To avoid responsibility, they delegate selfish or unethical
decisions (Hamman et al., 2010; Bartling and Fischbacher, 2011; Oexl and Grossman,
2013). They blame others even if they are not responsible (Gurdal et al., 2013).

Apart from accounting for blame and the division of responsibility, this paper has a few
more differences from existing theoretical work on regret in games. For example, in Renou
and Schlag (2010), Halpern and Pass (2012), and García-Pola (2020), the players’ payoffs
only depend on regret, while in this paper, players care about both baseline (e.g., material)
payoffs and regret in the original spirit of Loomes and Sugden (1982). Also, while I focus
on the players’ best-response correspondences, other papers study regret using particular
solution concepts. For instance, Halpern and Pass (2012) assume players to know that
the other players are regret minimizers without common knowledge of rationality. Renou
and Schlag’s (2010) minimax regret equilibrium allows for inconsistent beliefs, while
García-Pola (2020) studies regret under level-𝑘 reasoning. I study equilibrium predictions
in Appendix A.

While following the single-agent regret approach, Battigalli et al. (2022) allow players
to care about both baseline payoffs and regret. Allowing for chance moves, they study
regret in extensive-form psychological games (Geanakoplos et al., 1989; Battigalli and
Dufwenberg, 2009). This modeling approach is necessitated by the fact that in an extensive-
form game, a player’s strategy is usually not observable (by the other players) after the
game has ended. Thus, the authors leverage the psychological games framework to model
each player’s ex-post beliefs over the other players’ strategies; these beliefs are central in
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a player’s counterfactual thinking, which determines regret. Here I restrict attention to
static games without chance moves, where strategies are ex-post observable. This removes
the need to model ex-post beliefs and allows us to instead focus our attention on how
blame and the division of responsibility affect regret and, in turn, behavior.

2 A model of two-player games with regret and blame

A (static) game is characterized by a tuple 𝐺 := ⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 , (𝑚𝑖)𝑖∈𝑁⟩. 𝑁 ≡
{1, . . . , 𝑛} is a finite set of 𝑛 players. We will restrict attention to two-player games
(i.e., 𝑛 = 2). Appendix A.4 extends the model to 𝑛-player games. 𝑆𝑖 is player 𝑖’s finite
action space and 𝑆 := ×𝑖∈𝑁𝑆𝑖 is the action profile space. 𝑠 ∈ 𝑆 denotes an action profile.
𝑢𝑖 : 𝑆 → R is player 𝑖’s Bernoulli baseline payoff function, which does not account for
regret. It is analogous to the choiceless utility function of Loomes and Sugden (1982).
In applications, baseline payoffs will be assumed equal to monetary payoffs, although in
principle, strategic regret considerations can be applied in addition to other behavioral
properties that 𝑢𝑖 encompasses. 𝑚𝑖 : 𝑆 → R is player 𝑖’s Bernoulli modified payoff
function, which accounts for regret and blame and is described below. Denote a mixed
action of player 𝑖 by 𝜎𝑖 and the space of player 𝑖’s mixed actions by Δ(𝑆𝑖). 𝜎𝑖(𝑠𝑖) is
the probability with which 𝑖 plays action 𝑠𝑖. With abuse of notation, the baseline (resp.
modified) payoff of player 𝑖 from a mixed action profile 𝜎 ∈ Δ := ×𝑖∈𝐼Δ(𝑆𝑖) is given by
𝑢𝑖(𝜎) := ∑︀

𝑠∈𝑆 𝑢𝑖 (𝑠)∏︀𝑘∈𝑁 𝜎𝑘(𝑠𝑘) (resp. 𝑚𝑖(𝜎) := ∑︀
𝑠∈𝑆 𝑚𝑖 (𝑠)∏︀𝑘∈𝑁 𝜎𝑘(𝑠𝑘)).

Modified payoffs. To describe the modified payoffs, we first need to define the blame
payoff 𝑢𝑏

𝑖(𝑠𝑖,𝑠𝑗). This is the payoff that player 𝑖 could have received and blames player 𝑗

for not actually receiving.

Definition 1. The blame payoff for player 𝑖 when action profile (𝑠𝑖,𝑠𝑗) is played is
given by 𝑢𝑏

𝑖(𝑠𝑖,𝑠𝑗) := max
{︁
𝑢𝑏𝑎

𝑖 (𝑠𝑖), 𝑢𝑖(𝑠𝑖,𝑠𝑗)
}︁
, where 𝑢𝑏𝑎

𝑖 (𝑠𝑖) := max𝑠′
𝑗∈𝑃 𝐵𝑅𝑗(𝑠𝑖) 𝑢𝑖(𝑠𝑖,𝑠

′
𝑗).

𝑃𝐵𝑅𝑗(𝑠𝑖) := arg max𝑠′
𝑗∈𝑆𝑗

𝑢𝑗(𝑠′
𝑗,𝑠𝑖) is player 𝑗’s pure best-response correspondence (in

baseline payoff terms).

Remark. Taking the maximum over 𝑠′
𝑗 ∈ 𝑃𝐵𝑅𝑗(𝑠𝑖) means that in the counterfactual

that 𝑖 considers in assigning blame to 𝑗, if 𝑗 has multiple best-responses to 𝑠𝑖, he chooses
the best-response that is most beneficial to 𝑖.

The blame payoff for player 𝑖 (she) at an action profile (𝑠𝑖,𝑠𝑗) is the maximum baseline
payoff that player 𝑖 can get by playing 𝑠𝑖 if player 𝑗 (he) best-responds to 𝑠𝑖 to maximize
his baseline payoff, provided that this maximum baseline payoff of player 𝑖 is higher than
her payoff when (𝑠𝑖,𝑠𝑗) is played; otherwise the blame payoff for player 𝑖 is equal to her
baseline payoff at (𝑠𝑖,𝑠𝑗).
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𝑢𝑏𝑎
𝑖 (𝑠𝑖) > 𝑢𝑖(𝑠𝑖,𝑠𝑗) means that player 𝑗 could have chosen an action 𝑠′

𝑗 that would
maximize her own baseline payoff given the action 𝑠𝑖 of player 𝑖 and at the same time
increase player 𝑖’s baseline payoff. I postulate that in this case, player 𝑖 assigns part of
the blame for the outcome of the game to 𝑗, which mitigates the intensity of 𝑖’s regret.
Namely, the modified payoff is given by

𝑚𝑖(𝑠𝑖,𝑠𝑗) := 𝑢𝑖(𝑠𝑖,𝑠𝑗) − 𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
(1)

where 𝑟𝑖 measures the regret of player 𝑖 through (i) the realized (baseline) payoff 𝑢𝑖(𝑠𝑖,𝑠𝑗),
(ii) the payoff she would achieve by best-responding, 𝑢𝑏𝑟

𝑖 (𝑠𝑗) := max𝑠′
𝑖∈𝑆𝑖

𝑢𝑖(𝑠′
𝑖,𝑠𝑗), and (iii)

the blame payoff, 𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗).8 Unless otherwise stated, regret is given by

𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
:= 𝛼𝑖 max

{︁
𝑢𝑏𝑟

𝑖 −
[︁
𝛽𝑖𝑢

𝑏
𝑖 + (1 − 𝛽𝑖)𝑢𝑖

]︁
,0
}︁

, (2)

where 𝛼𝑖 ≥ 0 measures the intensity with which player 𝑖 experiences regret.9 𝛽𝑖 ∈ [0,1]
is player 𝑖’s tendency (or propensity) to blame. It measures the degree to which, when
possible, player 𝑖 assigns part of the blame to player 𝑗 ̸= 𝑖 and player 𝑖’s own regret is
mitigated. 𝛽𝑖 = 0 corresponds to single-agent regret, while 𝛽𝑖 > 0 to strategic regret. For
𝛽𝑖 = 0, the regret function is as in Renou and Schlag (2010), Halpern and Pass (2012),
García-Pola (2020), and Battigalli et al. (2022). In the first three papers, players only
care about regret, which, loosely put, corresponds to 𝛼𝑖 = ∞. In Battigalli et al. (2022),
players care about both baseline payoffs and regret, and the modified payoffs are as defined
here for 𝛽𝑖 = 0.

Discussion of the strategic regret assumption. This formulation of strategic regret
is conservative in the sense that player 𝑖’s regret is mitigated only if some of the opponent’s
best-responses would have been beneficial to player 𝑖. When performing counterfactual
thinking, player 𝑖 perceives player 𝑗 as completely self-interested. Under alternative
formulations, player 𝑖 could assign blame to player 𝑗 simply due to the availability of an
action—not necessarily a best-response—to 𝑗 that would have led to a Pareto improvement.

One could however argue that in some cases, player 𝑖 may not assign blame to
player 𝑗 (when he has had available a Pareto-improving best-response), as he may only
unintentionally have not best-responded. Yet, regret is also generated by a player’s own
unintentional non-best-response; it is thus natural to assume that a player attributes

8Like the expected utility formulation of regret in Loomes and Sugden (1982), this is an expected
utility formulation of regret and blame. Particularly, even when players deliberately randomize, a player
regrets and blames the other player with respect to their ultimately chosen pure actions. This formulation
of regret is conceptually different from the one in Heydari (2024), where randomization mitigates the
decision maker’s responsibility and regret.

Unlike in Loomes and Sugden (1982), player 𝑖’s regret arises from a comparison of the realized outcome
to 𝑖’s best alternative (i.e., 𝑖’s best-response payoff).

9Appendix E presents results under more general assumptions on 𝑟𝑖.
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blame to others or oneself using common standards. Indeed, there is evidence that people
blame others for unintentional behavior (Knobe and Burra, 2006) or even for outcomes
that they are not responsible for (Gurdal et al., 2013). Also, explicit attribution of blame
is not necessary, as blame can merely be a justification that mitigates player 𝑖’s self-blame.

Now, let us for a moment entertain the possibility that the availability to player 𝑗 of
a Pareto-improving best-response exacerbates—rather than mitigates—𝑖’s regret (e.g.,
by making her feel even worse that the two of them did not manage to coordinate on a
Pareto superior outcome). Then, we would quickly reject this idea, as it would lead to
diametrically opposite predictions (compared to the predictions of the adopted model),
which are rejected by the experimental results of Bolton et al. (2016) and section 4.

Yet another possible formulation of strategic regret could pose that player 𝑖 blames
player 𝑗 and does not regret her non-best-response to player 𝑗’s action when player 𝑗 has
played a dominated action. Still, given that there are no dominated actions in the stag
hunt game, this formulation of strategic regret would not, for example, explain Bolton
et al.’s (2016) results, which, as we will see, the proposed formulation does.

3 Theoretical predictions of strategic regret

Under single-agent regret, best-response correspondences are the same as under baseline
payoffs. To see this, notice that for 𝛽𝑖 = 0, player 𝑖’s modified payoff becomes 𝑚𝑖(𝑠𝑖,𝑠𝑗) =
(1 + 𝛼𝑖)𝑢𝑖(𝑠𝑖,𝑠𝑗) − 𝛼𝑖𝑢

𝑏𝑟
𝑖 (𝑠𝑗), where 𝑢𝑏𝑟

𝑖 (𝑠𝑗) is independent of 𝑠𝑖, and thus,

arg max
𝑠𝑖

𝑚𝑖(𝑠𝑖,𝜎𝑗) = arg max
𝑠𝑖

𝑢𝑖(𝑠𝑖,𝜎𝑗)

for any 𝜎𝑗. Therefore, compared to standard assumptions on preferences (i.e., baseline
payoffs), single-agent regret does not provide any new insights into strategic behavior.10

But can strategic regret, instead, help explain subject-level behavior? To answer this
question, we will now derive predictions about how a player’s attitudes towards regret
and blame shape their behavior (i.e., best-response correspondence) in various games. We
will see that strategic regret predicts that players who tend to blame more (i.e., have
higher 𝛽𝑖’s) (i) choose higher numbers in the traveler’s dilemma and (ii) are more willing
to play stag in the stag hunt game (with hare being a safe option). On the other hand,
the propensity to blame does not affect behavior in public goods games, the prisoner’s
dilemma, or dictator games. These predictions form the basis of the experiment presented
in section 4, where participants played one-shot versions of these games, so non-equilibrium
predictions are particularly relevant for the development of our hypotheses.

The traveler’s dilemma and stag hunt game are chosen for the following reasons.
10This is true in the context of this model. Refer to the introduction for single-agent regret models

that do offer such insights.
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First, in these games, there is in theory scope for blame (i.e., outcomes of the game
where 𝑢𝑏

𝑖 > 𝑢𝑖), so strategic regret may explain heterogeneity in participant behavior.
Second, both games exhibit substantial heterogeneity in participant behavior in existing
experiments, which makes a model that explains subject-level behavior most useful. Third,
the two games are strategically very different: the traveler’s dilemma is dominance-solvable
under standard assumptions on preferences, while the stag hunt game is a coordination
game. This allows us to test whether strategic regret can help explain behavior in different
strategic environments.

In theory, the public goods game, prisoner’s dilemma, and dictator game fall outside
this range of strategic environments and will thus serve as placebos. In these games, there
is no scope for blame, so the propensity to blame should not explain participant behavior.
Placebo tests are useful for the following reason. Blame is assigned to another player for
not playing a Pareto-improving best-response, which suggests that a player takes into
consideration both players’ payoffs. Therefore, participants with stronger tendency to
blame may also be more altruistic. In that case, any predictive ability of the tendency
to blame over behavior in the traveler’s dilemma and stag hunt game could be partly
attributed to other-regarding preferences. However, more altruistic participants should
also (i) give more in the dictator game, (ii) be more willing to cooperate in the prisoner’s
dilemma, and (iii) contribute more in the public goods game. Thus, if the propensity to
blame explains behavior in the traveler’s dilemma and stag hunt game as predicted by
strategic regret but does not predict (i) more giving in the dictator game, (ii) a higher
likelihood to cooperate in the prisoner’s dilemma, or (iii) a larger contribution in the
public goods game, then the alternative explanation based on other-regarding preferences
becomes less convincing.

3.1 The traveler’s dilemma

In the traveler’s dilemma introduced by Basu (1994), two players simultaneously choose
integers (i.e., amounts of money) from a certain range. Let that range be {80,81, . . . ,200}.
Then, each player receives the lowest of the two chosen numbers. On top of this, if the two
announced numbers are different, the amount received by the player that has announced
the lower (resp. higher) number is increased (resp. decreased) by a bonus (resp. penalty)
𝑏 > 1.

Claim 1 shows that a player 𝑖’s best-response (in terms of modified payoffs) to some
fixed beliefs is non-decreasing in player 𝑖’s tendency to blame, 𝛽𝑖. This is because the only
case where 𝑖 blames player 𝑗 and experiences reduced regret is when 𝑗 chooses a number
that is lower than 𝑖’s by more than 1. In that case, 𝑖 blames 𝑗 for not undercutting her
by one rather than by more than one. Thus, blame tends to make players choose higher
numbers.
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Claim 1. Let regret be given by 𝑟𝑖(𝑢𝑖,𝑢
𝑏𝑟
𝑖 ,𝑢𝑏

𝑖) := ̃︀𝑟𝑖(𝑢𝑏𝑟
𝑖 − [𝛽𝑖𝑢

𝑏
𝑖 + (1 − 𝛽𝑖)𝑢𝑖]) for somẽ︀𝑟𝑖 : R+ → R+ with ̃︀𝑟′

𝑖 ≥ 0 and ̃︀𝑟′′
𝑖 ≤ 0. Then, in the traveler’s dilemma, given any

conjecture 𝜎𝑗 over player 𝑗’s action, player 𝑖’s best-response is non-decreasing in 𝛽𝑖.

Figure 1 plots the best-response of player 𝑖 to uniform mixing by player 𝑗 as a function
of 𝛽𝑖 and 𝛼𝑖 under our canonical specification of regret given in (2) under different values
of the parameter 𝑏.11 Darker grays correspond to higher best-responses. Indeed, the best-
response is increasing in 𝛽𝑖 (for 𝛼𝑖 high enough).12 Thus, in the experiment, participants
with stronger tendency to blame are expected to choose higher numbers.

Figure 1: The traveler’s dilemma: best-response of player 𝑖 to uniform mixing by player 𝑗 as a
function of 𝛽𝑖 and 𝛼𝑖
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)︁
is given by (2). 𝜎𝑗(𝑥) = 1/121 for every 𝑥 ∈ {80,81, . . . ,200}. In knife-edge

cases where there are two best-responses, the lowest one is reported.

3.2 The stag hunt game

Figure 2 presents a stag hunt game with normalized payoffs, where Λ, 𝜆 > 0.
The robustness of stag to strategic uncertainty is commonly measured by the maximum

probability with which player 𝑗 can play hare with stag still being a best-response for
player 𝑖. This probability is called the size of the basin of attraction of stag; denote it by
BAS𝑖 (e.g., see Dal Bó et al., 2021). Under standard or single-agent regret preferences
(i.e., 𝛼𝑖𝛽𝑖 = 0), BAS𝑖 = Λ/(𝜆 + Λ). Under strategic regret, BAS𝑖 is player-specific due to
𝛼𝑖 and 𝛽𝑖. BAS𝑖 is described in Claim 2.

11The analysis does not only apply to the case where player 𝑗 deliberately mixes. It can also capture
player 𝑖’s uncertainty over 𝑗’s behavior.

12Also, the best-response is increasing in 𝛼𝑖 (for 𝛽𝑖 high enough) and decreasing in 𝑏.
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Figure 2: A normalized stag hunt game

(a) Baseline/monetary payoffs

stag hare
stag 1,1 −𝜆,1 − Λ
hare 1 − Λ, − 𝜆 0,0

(b) row player modified payoffs

stag hare
stag 1 −(𝜆 + 𝛼1 max{𝜆 − 𝛽1(1 + 𝜆), 0})
hare 1 − (1 + 𝛼1)Λ + 𝛼1𝛽1 max{Λ − 1, 0} 0

Claim 2. The size of the basin of attraction of stag for player 𝑖, BAS𝑖, is (i) decreasing
in 𝜆 and increasing in Λ, (ii) increasing in 𝛼𝑖 provided 𝛽𝑖 > 0, and (iii) increasing in 𝛽𝑖 for
𝛽𝑖 ∈ [0, 𝜆/(1 + 𝜆)] and constant in 𝛽𝑖 for 𝛽𝑖 ∈ [𝜆/(1 + 𝜆),1] provided 𝛼𝑖 > 0 and Λ ≤ 1.13

Part (i) shows that the comparative statics of BAS𝑖 with respect to 𝜆 and Λ follow the
same intuition as they do under baseline payoffs. Part (ii) shows that, while both hare
and stag can cause regret (when the other player chooses stag and hare, respectively), the
former type of regret dominates, which makes BAS𝑖 increasing in 𝛼𝑖.

Part (iii) is our main focus. When player 𝑖 chooses stag and 𝑗 chooses hare, the former
can blame the latter. Particularly, for Λ ≤ 1, this is the only case where 𝑖 can blame 𝑗.
Thus, for Λ ≤ 1, the attractiveness of stag to player 𝑖 is increasing in the propensity to
blame, 𝛽𝑖. In other words, the higher 𝛽𝑖 is, the less confident player 𝑖 needs to be that
player 𝑗 will play stag for 𝑖 to also want to play stag. In the experiment, we will look at
stag hunt games where hare is a safe option (i.e., Λ = 1), so participants with stronger
tendency to blame are expected to play stag with higher frequency.

3.3 Weakly unilaterally competitive games

Although strategic regret affects behavior in the traveler’s dilemma and stag hunt game,
there are clearly games where it has no bite. One such class of games is weakly unilaterally
competitive (WUC) games, a proper superset of strictly competitive games. For our
purposes, and slightly more broadly defined than originally in Kats and Thisse (1992), a
game is WUC if any unilateral change of action by player 𝑖 that results in a weak increase
in 𝑖’s baseline payoff causes a weak decline in the baseline payoff of the other player.

Definition 2. A game is weakly unilaterally competitive (WUC) if for every player 𝑖 ∈ 𝑁 ,
every 𝑠𝑖,𝑠

′
𝑖 ∈ 𝑆𝑖, and every 𝑠𝑗 ∈ 𝑆𝑗 , 𝑗 ≠ 𝑖, if 𝑢𝑖(𝑠′

𝑖,𝑠𝑗) ≥ 𝑢𝑖(𝑠𝑖,𝑠𝑗), then 𝑢𝑗(𝑠′
𝑖,𝑠𝑗) ≤ 𝑢𝑗(𝑠𝑖,𝑠𝑗).

Remark. The dictator game, prisoner’s dilemma, and public goods game (see section 4)
13If 𝛼𝑖 > 0 and Λ > 1, then BAS𝑖 is increasing in 𝛽𝑖 for 𝛽𝑖 ∈ [0, 𝜆/(1 + 𝜆)] and decreasing in 𝛽𝑖 for

𝛽𝑖 ∈ [𝜆/(1 + 𝜆),1].
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are WUC.

In a WUC game, there is no outcome where a player can blame another for not playing
a Pareto-improving best-response, since such a best-response never exists. Therefore,
every player 𝑖’s modified payoffs are independent of 𝛽𝑖. Particularly, modified payoffs
under strategic regret are equal to those under single-agent regret, so best-response
correspondences coincide with those under single-agent regret, which, as we have seen,
always coincide with those under baseline payoffs.14 Proposition 1 makes this simple
observation.

Proposition 1. Consider any weakly unilaterally competitive game. For any player 𝑖 ∈ 𝑁

and any action profile 𝑠 ∈ 𝑆, 𝑚𝑖(𝑠) is constant in 𝛽𝑖, and thus, arg max𝑠𝑖
𝑚𝑖(𝑠𝑖,𝜎𝑗) =

arg max𝑠𝑖
𝑢𝑖(𝑠𝑖,𝜎𝑗) for every 𝜎𝑗 ∈ Δ(𝑆𝑗).

The observation that the tendency to blame plays no role in games with extreme
conflict of interest is particularly insightful when viewed against the analysis of the
traveler’s dilemma and the stag hunt game. In these games, there is partial alignment of
interests, and strategic regret does make a difference. In the traveler’s dilemma, if we fix
player 𝑖’s number, then both 𝑖 and 𝑗 prefer (in baseline payoff terms) that 𝑗 undercut 𝑖 by
exactly one rather than by more than one. Similarly, in the stag hunt game, given that
player 𝑖 plays stag, both 𝑖 and 𝑗 prefer that 𝑗 also play stag.

4 Experimental evidence on regret and blame in games

This section experimentally tests the strategic regret assumption (i.e., that blame assigned
to the other player for not playing a mutually beneficial best-response mitigates regret)
and the ensuing predictions.

4.1 Experimental design

The sample consists of 254 participants invited by email from the subject pool of the
Center for Experimental Social Science at New York University.15 Participants earned
on average $22.2. The experiment was conducted in z-Tree (Fischbacher, 2007) and
lasted approximately 90 minutes, except for treatment 5 (see Table 2), which lasted
approximately 105 minutes. The experimental procedure is documented in detail in
Appendices C and D; here I describe it briefly.

14Here we focus on two-player games, but the result still applies when the model is extended to 𝑛-player
games as described in Appendix A.4. An 𝑛-player game is WUC if any unilateral change of action by a
player 𝑖 that results in a weak increase in 𝑖’s baseline payoff causes a weak decline in the baseline payoff
of every other player.

15A total of 25 sessions were conducted: 3 sessions with 4 participants each, 1 with 6 participants, 4
with 8 participants, 6 with 10 participants, 7 with 12 participants, 2 with 14 participants, and 2 with 16
participants each.
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4.1.1 Description of survey-type questions

Each subject was asked to describe their thoughts and emotions after having hypothetically
played each game of those presented in Figure 3 by indicating their level of agreement
to the statements presented in Table 1 using a Likert scale from 1 (“Not at all”) to 7
(“Totally agree”). These questions comprise the Regret and Blame Scale (RBS), adapted
to the strategic context from the Regret and Disappointment Scale (RDS) of Marcatto
and Ferrante (2008), which was designed for individual decision-making. The RDS was
modified so that disappointment with the turn of events beyond the subject’s control is
replaced by blame on the other player for her action.

Table 1: Composition of the Regret and Blame Scale (RBS)

Question item Response variable name
1. I am sorry about what happened to me. affective reaction
2. I wish I had made a different choice. regret
3. I wish the other player had acted differently. blame
4. I feel responsible for what happened to me. internal attribution
5. The other player is the cause of what happened to me. external attribution
6. I am satisfied about what happened to me. control
7. Things would have gone better if (a) I had chosen
differently, or (b) the other player had chosen differently.

choice between counter-
factuals

Specifically, each participant was asked to answer the RBS questions in each of the
following four scenarios scenarios:16

(i) as row player, you have played 𝐵 and the column player has played 𝐿 in SAR1,

(ii) as row player, you have played 𝐵 and the column player has played 𝐿 in STR1,

(iii) as row player, you have played 𝑇 and the column player has played 𝐿 in SAR2,

(iv) as row player, you have played 𝑇 and the column player has played 𝐿 in STR2.

SAR is a mnemonic for single-agent regret, while STR for strategic regret. Game SAR1
(resp. SAR2) is the same as STR1 (resp. STR2) except for the column player’s payoffs for
outcomes (𝐵,𝑀) and (𝐵,𝑅) (resp. (𝑇,𝑀) and (𝑇,𝑅)). Given the hypothesized outcomes,
in games SAR1 and SAR2 the column player does not have a best-response to the row
player’s action that also increases the row player’s payoff, while in STR1 and STR2 she
does.

Therefore, responses in the SAR items will function as a baseline and be compared
to responses to STR items. According to strategic regret, in the scenarios described
above, participants should blame more the other player and regret less themselves in the

16In treatment 5 (see Table 2), only scenarios (ii) and (iv) were presented.
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STR games than in the corresponding SAR ones. The participants’ regret and blame
are measured by items 2 through 5 and 7. Item 1 measures the affective reaction of
the subject, while item 6 is a control item. The answers to these two items should be
negatively correlated.

Figure 3: Games in reference to which subjects answer the RBS items

(a) Game SAR1

𝐿 𝑀 𝑅
𝑇 5,5 30,10 20,15
𝐶 0,15 10,10 50,5
𝐵 0,20 25,15 40,10

(b) Game SAR2

𝐿 𝑀 𝑅
𝑇 10,15 25,10 25,10
𝐶 15,20 5,15 20,10
𝐵 15,10 20,15 10,20

(c) Game STR1

𝐿 𝑀 𝑅
𝑇 5,5 30,10 20,15
𝐶 0,15 10,10 50,5
𝐵 0,20 25,50 40,40

(d) Game STR2

𝐿 𝑀 𝑅
𝑇 10,15 25,30 25,30
𝐶 15,20 5,15 20,10
𝐵 15,10 20,15 10,20

Notes: the differences between SAR1 (resp. SAR2) and STR1 (resp. STR2) are in bold.

Discussion of the RBS survey. The RBS survey was not conducted with respect
to the games that participants actually played for the following reasons. If it had been
conducted on those games before the participants played the games, then the survey could
have affected participant behavior in those games (e.g., by inducing them to think about
the games in terms of regret and blame). This could artificially enhance the predictive
power of survey responses over incentivized behavior. If, on the other hand, the survey
was conducted on those games after the participants played the games, then the responses
could reflect a combination of both realized and anticipated regret and blame, depending
on how close the hypothetical outcome in the survey would have been to the realized
outcome of each subject. Particularly, each subject’s survey responses would depend on her
specific experience playing the games, which would make survey responses incomparable
across subjects. Last, any predictive power of survey responses over incentivized play
will act as stronger evidence in favor of strategic regret if the survey responses refer to
different games than those that participants played. Such cross-game predictive power
will show that each individual’s attitudes towards regret and blame—rather than features
of each specific game—shape her behavior across a range of strategic environments, as
suggested by strategic regret.

But—apart from being different from the games that participants played—what
properties should the games used in the survey satisfy? First, they should have small
action spaces, so that participants can more easily analyze them. This should limit the
noise in survey responses. Second, no action should be strictly dominated, especially not
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those actions that are played in the hypothetical outcomes of the games. This ensures that
the hypothetical scenarios that the participants were asked to consider are realistic. Third,
for each game that does not allow for blame (e.g., SAR1), there should be a comparable
game that does allow for it where the original game does not (e.g., like STR1 is comparable
to SAR1). Two 2 × 2 games cannot be comparable and at the same time each satisfy the
second property. Thus, 3 × 3 games are used, as seen in Figure 3.

Still, one may question whether people can accurately predict their emotions even
in those simplest possible games. However, what matters is anticipated regret. Thus,
it is important that subjects not make any systematic errors (i.e., that depend on the
game at hand) in reporting their regret anticipation.17 Even if one is reluctant to believe
that participants accurately predict emotional states, or even that they submit their
true anticipated regret, it is hard to imagine why there could be systematic errors in
the reporting of regret anticipation. Also, the results of section 4.2.2 on the predictive
power of survey responses over incentivized play showcase the informativeness of the RBS
survey, thereby discounting concerns about the meaningfulness of the participants’ survey
responses.

4.1.2 Experiment timeline and treatments

In treatment 1, subjects first completed the RBS survey with respect to SAR1 and SAR2.
Then, they played 8 rounds of the traveler’s dilemma with the bonus/penalty parameter 𝑏

taking a different value in each round. Next, they played 8 rounds of the stag hung game
with a safe option presented in Figure 4 with the cost 𝑐 of playing stag taking a different
value in each round. Then, they played the Kreps game (Kreps, 1989; Goeree and Holt,
2001).18 Finally, they completed the RBS survey with respect to STR1 and STR2.19

Figure 4: A stag hunt game with a safe option

stag hare
stag 200 − 𝑐,200 − 𝑐 100 − 𝑐,100
hare 100,100 − 𝑐 100,100

In treatment 2, participants first played the traveler’s dilemma, then the stag hunt
game, then completed the survey with respect to SAR1 and SAR2, then played the Kreps

17For example, they do not over-report their anticipated regret (compared to their true regret anticipa-
tion, not compared to actual regret that would be realized in the hypothetical scenarios) in STR games,
while under-reporting it in SAR games.

18The analysis of the Kreps game is based on equilibrium predictions, which are not the main focus of
the paper. Therefore, the experimental results on the Kreps game are discussed in Appendix A.3, after
equilibrium predictions have been studied.

19The three games were placed in between the SAR and STR portions of the RBS survey so that
participants (i) do not see the similar SAR and STR games too soon one after the other and (ii) do
not consecutively answer too many survey-type questions, which could decrease their attention. Also,
participants were required to spend at least 3 minutes in each game of Figure 3, reading the hypothetical
scenario and responding to the survey in reference to the game.
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game, and finally completed the survey with respect to STR1 and STR2. This will allow
us to test for order effects (e.g., whether the survey affected behavior in the games by
priming subjects into thinking about regret and blame). The analysis in Appendix B.5
finds no evidence of order effects.

Treatments 3 and 4 were identical to treatment 1 except for the fact that instead of
the stag hunt game, participants played the two- and four-player volunteer’s dilemma of
Diekmann (1985), respectively. A discussion of the volunteer’s dilemma results requires a
more general model of strategic regret and is thus relegated to Appendix A.5. The results
show no predictive power of the propensity to blame over the likelihood to volunteer,
although our simple model of strategic regret would predict those with higher tendency
to blame to be less willing to volunteer. However, the confidence intervals are not tight.
Also, Appendix A.6 presents a generalized model of strategic regret that explains the
volunteer’s dilemma results.

In treatment 5, participants first completed the RBS survey with respect to STR1 and
STR2. Then, they responded to a dictator game survey (i.e., unincentivized play).20 In
the dictator game, each participant decided how to (hypothetically) divide 200 tokens
between herself and another participant, where a token has a different value to each of the
two participants. The value changed from round to round. Next, they played 8 rounds
of the traveler’s dilemma, 8 rounds of the stag hunt game, and 8 rounds of a two-player
public goods game. In the public goods game, each of two participants chose how many
points to keep from an endowment of 200 points; the remaining points went to the group
account. The points that the two players simultaneously put in the group account were
multiplied by a factor 𝑘 ∈ (1,2) and then distributed equally between the two players.
𝑘 had a different value in each round. Finally, they played 8 rounds of the prisoner’s
dilemma presented in Figure 5 with the cost 𝑐 of cooperating taking a different value in
each round.

Figure 5: A single-parameter prisoner’s dilemma

cooperate defect
cooperate 200,200 100 − 𝑐,200 + 𝑐

defect 200 + 𝑐,100 − 𝑐 100,100

Table 2 summarizes the different treatments.21 In all treatments, there was random,
anonymous rematching without feedback between the rounds of each game. Participants
were rewarded points for one randomly chosen round of each of the incentivized games in

20The dictator game is unincentivized so that (i) every participant can play as the dictator (which
produces more data compared to the case where only half played as dictators) and, at the same time, (ii)
strategic incentives and behavior are not distorted (e.g., due to reciprocal motivations), as could happen
if an interactive protocol or one with role uncertainty was used (e.g., see Grech and Nax, 2020; Grech
et al., 2022).

21Subjects from the first four treatments of Table 2 were later invited to also participate in sections
DG, PG, and PD of treatment 5. 22 participants returned for the additional sections.
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each treatment. After they finished playing all the rounds of a game, participants saw (i)
their own action in each round, (ii) the action of the participant that they were matched
with in each round, (iii) which round was randomly selected for payment, and (iv) the
points that they earned. The feedback was placed at the end of all rounds of each game so
that it came as soon as possible after the participants’ decisions (since delayed feedback
may alleviate regret), while not allowing for learning between the rounds of the game.
Also, there were no practice rounds.

Table 2: Summary of treatments

Treatment Participants Sessions
1) RBS SAR → TD → SH → KG → RBS STR 52 6
2) TD → SH → RBS SAR → KG → RBS STR 48 5
3) RBS SAR → TD → VD2 → KG → RBS STR 50 5
4) RBS SAR → TD → VD4 → KG → RBS STR 52 4
5) RBS STR → DG → TD → SH → PG → PD 52 5

Notes: TD, SH, KG, DG, PG, and PD stand for the traveler’s dilemma, stag hunt game, Kreps
game, dictator game, public goods game, and prisoner’s dilemma, respectively. VD2 and VD4
stand for the two- and four-player volunteer’s dilemma, respectively.

4.2 Hypotheses and results

4.2.1 Testing the strategic regret assumption

First, we will test whether the availability to the column player of a Pareto-improving
best-response makes the row player blame the column player more and regret less.22

Hypothesis 1. Participants regret less and blame more (as measured by their RBS survey
responses) in STR games than in SAR games. Also, within each game, participants who
blame more regret less (see section 2).

Figure 6 presents the participants’ average responses for items 2 through 5 and 7.23

All differences are as expected. Participants blame more and regret less in a game where
according to the theory there is room for blame to mitigate regret (i.e., STR1 and STR2)

22Namely, it will be tested whether: (i) the responses to the regret and internal attribution items are
on average lower for STR1 (resp. STR2) than for SAR1 (resp. SAR2), (ii) the responses to the blame and
external attribution items are on average higher for STR1 (resp. STR2) than for SAR1 (resp. SAR2), (iii)
the percentage of subjects that choose (a) in the counterfactual choice question is lower for STR1 (resp.
STR2) than for SAR1 (resp. SAR2), and (iv) the responses to the regret and internal attribution items
are negatively correlated (at a subject level) with the responses to the blame and internal attribution
items—particularly in STR games. Points (i)–(iii) are based on aggregate data, while (iv) tests whether
blame mitigates regret at a subject level.

23In Figure 6, only data from treatments 1–4 are used, where participants completed the RBS survey
with respect to both the SAR and the STR games. Appendix B studies the affective reaction and control
item responses. The two are negatively correlated, as expected.
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than in a game where there is no room for blame (i.e., SAR1 and SAR2, respectively). At
the same time, Figure 7 shows that within each game, the responses to the blame and
external attribution items are negatively correlated with the responses to the regret and
internal attribution items, particularly in STR games. This suggests that indeed blame
assigned to the other player is the mechanism through which regret is reduced. Overall,
there is strong evidence in favor of hypothesis 1.

Figure 6: RBS results: regret and blame in SAR versus STR games
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(b) SAR2 versus STR2

Strategic regret predicts this bar to be higher (from the two in the corresponding pair)

1

3

5

7

regret blame internal
attribution

external
attribution

Item

R
es

po
ns

e

0.00
0.25
0.50
0.75
1.00

choice between
counterfactuals

I h
ad

 c
ho

se
n

di
ffe

re
nt

ly
 %

Game SAR2 STR2

Notes: 𝑁 = 202. Bars of mean responses with standard error intervals. The panels on the right
show the percentage of subjects that chose (a) “I had chosen differently” in the choice between
counterfactuals item. All differences are statistically significant at the 0.1% level based on (i)
Wilcoxon signed-rank one-sided tests (Pratt’s (1959) method of dealing with ties is used) for the
items in the left panels and (ii) Fay and Lumbard (2021) one-sided tests for the right panels.
The latter is a test on the sign of differences in paired responses; with binary responses, the
two-sided version of the test is equivalent to McNemar’s test.

4.2.2 Testing the strategic regret predictions

While survey responses alone support the strategic regret assumption, we will now see that
survey responses can explain incentivized play in games very different from those used in
the survey, consistent with the theory. This will lend further support to strategic regret and
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Figure 7: Kendall’s 𝜏𝑏 correlation coefficients between RBS survey responses
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Notes: panels (a) and (b): 𝑁 = 202, panels (c) and (d): 𝑁 = 254. Red (resp. blue) denotes a
positive (resp. negative) correlation. Crossed-out coefficients are not significant at the 5% level
based on a two-sided test under the asymptotic 𝑡 approximation (with a continuity correction).

its predictions in particular. At the same time, the predictive power of survey responses
over incentivized behavior will increase confidence in the survey results themselves.

The following index will be used in testing the strategic regret predictions. For each
subject 𝑖, an index of blame intensity is calculated as a single principal component from
the subject’s ten RBS survey responses to items 2 through 5 and 7 in the two STR games
(5 items for each STR game):24

Blame Index𝑖 := PC

⎛⎜⎜⎜⎜⎝
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

regret𝑖𝑆𝑇 𝑅𝑗, internal attribution𝑖𝑆𝑇 𝑅𝑗

blame𝑖𝑆𝑇 𝑅𝑗, external attribution𝑖𝑆𝑇 𝑅𝑗,

choice between counterfactuals𝑖𝑆𝑇 𝑅𝑗

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
𝑗=1,2

⎞⎟⎟⎟⎟⎠ .

A high index means that the participant blames more and regrets less.
Hypotheses 2 and 3 refer to the predictive power of RBS survey responses over

incentivized behavior in games. According to strategic regret, participants with stronger
tendency to blame the other player (and thus, regret less) should choose higher numbers
in the traveler’s dilemma and play stag more frequently.

Hypothesis 2. Participants with higher Blame Index choose higher numbers in the
traveler’s dilemma (see section 3.1).

Hypothesis 3. Participants with higher Blame Index are more likely to play stag in the
stag hunt game (see section 3.2).

Figure 8a and Table 3a show that indeed participants with higher than median Blame
24choice between counterfactuals𝑖𝑆𝑇 𝑅𝑗 = 1 (resp. = 0) corresponds to the response “(a) I had chosen

differently” (resp. “(b) the other player had chosen differently”). All the loadings in the principal
components have the expected sign (see Table 9 in Appendix B.2). That is, the blame and external
attribution items (resp. regret, internal attribution, and choice between counterfactuals) have positive
(resp. negative) loadings. This serves as indirect evidence that blame indeed mitigates regret, as shown
already.
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Index choose numbers that are on average larger by around 15 compared to the numbers
chosen by participants with low Blame Index.25 The differences are statistically significant
across the whole range of values for the bonus/penalty parameter 𝑏. Similarly, Figure
8b and Table 3b show that for intermediate values of the cost 𝑐 of stag, subjects with
high Blame Index play stag more frequently than subjects with low Blame Index.26 For
such values of 𝑐, the frequency with which participants with high Blame Index play
stag is higher by 20 percentage points than the corresponding frequency for participants
with low Blame Index. For extreme values of 𝑐, behavior is concentrated close to the
extremes for both groups. We conclude that hypotheses 2 and 3 are supported by the
data. Participants’ answers to survey questions about anticipated regret and blame have
predictive power over their choices in incentivized play, consistent with strategic regret
predictions. This result becomes even more striking if one notices that the games used in
the survey are very different from the traveler’s dilemma and the stag hunt game.

Figure 8: Behavior of high versus low Blame Index subjects in incentivized play
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Notes: panel (a): 𝑁 = 254, panel (b): 𝑁 = 152. The lines represent the mean action for each
group of participants with standard error intervals. The group “high” (resp. “low”) is the subset
of participants whose Blame Index is above (resp. below) the median.

4.2.3 Strategic regret explains correlation in behavior across games

Consistent with strategic regret, I have shown that RBS survey responses predict in-
centivized play in the traveler’s dilemma and the stag hunt game. Even though this
should enhance our confidence that the survey responses are meaningful, one may still
be skeptical of survey responses and their predictive power as strong evidence in favor

25The median Blame Index was calculated for each game separately to ensure a 50%/50% split. That
is, a median Blame Index among the participants who played the traveler’s dilemma was calculated for
the analysis of that game, and another median was calculated among the participants who played the
stag hunt game (which is a subset of those who played the traveler’s dilemma).

26Boschloo’s (exact) test, which is used in Table 3b, is uniformly more powerful than Fisher’s exact test
and applies to cases where the sample size of each group is fixed (i.e., not random), as are the sample
sizes of the high and low Blame Index groups in our case (due to the 50%/50% split). For completeness,
Fisher’s exact test 𝑝-values are reported in Appendix B.3.
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Table 3: Behavior of high versus low Blame Index subjects in incentivized play

(a) Traveler’s dilemma: Wilcoxon-Mann-Whitney one-sided tests (𝑁 = 254)

Bonus/penalty (𝑏) 5 10 15 20 30 40 50 60
𝑝-value 0.004 0.001 0.005 0.009 0.011 0.004 0.038 0.031

(b) Stag hunt game: Boschloo’s one-sided tests (𝑁 = 152)

Stag cost (𝑐) 10 20 30 40 50 60 70 80
𝑝-value 0.854 0.662 0.309 0.058 0.006 0.014 0.027 0.233

Notes: the normal approximation with a continuity correction is used in the Wilcoxon-Mann-
Whitney tests.

of strategic regret. Thus, I also test hypothesis 4, which only uses data on incentivized
play, and not survey responses. This hypothesis is an implication of hypotheses 2 and 3
combined.27

Hypothesis 4. Participants who choose higher numbers in the traveler’s dilemma are
more likely to play stag in the stag hunt game.

To test hypothesis 4, I estimate a logistic regression of the stag hunt action on a
constant and the number chosen in the traveler’s dilemma for each combination of stag
cost 𝑐 and bonus/penalty 𝑏 for a total of 8 × 8 = 64 regressions. That is, I estimate
𝑃𝑟𝑜𝑏(𝑠𝑡𝑎𝑔|𝑐) = 1/[1+𝑒−(𝛾𝑐,𝑏+𝛿𝑐,𝑏TDnum𝑏)], where 𝑃𝑟𝑜𝑏(𝑠𝑡𝑎𝑔|𝑐) is the probability that stag is
chosen when the stag cost is 𝑐 and TDnum𝑏 is the number chosen in the traveler’s dilemma
when the bonus/penalty is 𝑏. This gives estimates ̂︀𝛾𝑐,𝑏 and ̂︀𝛿𝑐,𝑏 for each combination of 𝑐

and 𝑏.
In 53 out of the 64 regressions ̂︀𝛿𝑐,𝑏 is positive. In 35 (resp. 31) it is positive and

significant at the 10% (resp. 5%) level. At the same time, in no regression is ̂︀𝛿𝑐,𝑏

negative and significant at the 10% level. Particularly, Table 4 shows that the coefficients
are negative and/or insignificant mostly for 𝑐 and/or 𝑏 low, in which case behavior is
concentrated at the extremes of the action space. For 𝑏 and 𝑐 not too low, an increase in
the number chosen in the traveler’s dilemma by 10 implies a 10-20% increase in the odds
of stag. We conclude that subjects who choose higher numbers in the traveler’s dilemma
are more likely to choose stag, consistent with the predictions of strategic regret.

Table 11 in Appendix B.4 presents a test of the hypothesis using non-parametric
methods. The results are robust.

27Section 4.2.5 presents and tests an additional hypothesis that is derived from strategic regret and
does not employ survey responses.
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Table 4: Logistic regressions of the stag hunt action (stag = 1) on the number chosen in the
traveler’s dilemma (𝑁 = 152)

(a) 𝑝-values for ̂︀𝛿𝑐,𝑏

Stag cost (𝑐)
10 20 30 40 50 60 70 80

5 0.49 0.22 0.59 0.63 0.13 0.72 0.78 0.81
10 0.85 0.09 0.21 0.37 0 0.2 0.14 0.17

Bonus/ 15 0.29 0.41 0.08 0.11 0 0.01 0.04 0.04
penalty 20 0.39 0.61 0.07 0.19 0 0.03 0.04 0.05

(𝑏) 30 0.57 0.25 0.02 0.02 0 0 0 0
40 0.3 0.44 0.03 0.03 0 0 0 0
50 0.22 0.51 0.03 0.02 0 0.01 0 0
60 0.24 0.85 0.12 0.03 0 0.01 0 0

(b) Odds ratios for an increase in TDnum𝑏 by 10

Stag cost (𝑐)
10 20 30 40 50 60 70 80

5 1.09 1.08 1.02 0.98 1.08 0.98 0.99 0.99
10 0.97 1.12 1.06 1.04 1.21 1.08 1.1 1.1

Bonus/ 15 0.57 1.05 1.08 1.07 1.19 1.14 1.12 1.13
penalty 20 0.87 1.03 1.07 1.05 1.17 1.1 1.1 1.11

(𝑏) 30 0.93 1.07 1.1 1.09 1.19 1.14 1.14 1.18
40 0.87 1.05 1.1 1.08 1.17 1.14 1.15 1.17
50 0.86 1.04 1.09 1.08 1.16 1.11 1.13 1.17
60 0.87 1.01 1.06 1.07 1.17 1.11 1.14 1.15

4.2.4 Accounting for alternative explanations

The observed relationship between a participant’s behavior in the traveler’s dilemma and
her choices in the stag hunt game could also be due to other-regarding preferences. If,
instead of using strategic regret, we let modified payoffs be given by 𝑚𝑖(𝑠) = 𝑢𝑖(𝑠)+𝛾𝑖𝑢𝑗(𝑠)
for some 𝛾𝑖 ≥ 0, then a higher 𝛾𝑖 makes stag more attractive and at the same time induces
𝑖 to choose a higher number in the traveler’s dilemma.

The predictive power of survey responses over incentivized behavior indicates that
the mitigating effect of blame on regret is (at least partly) the mechanism behind this
relationship. However, the survey measures the regret-mitigating blame that a participant
would assign to another for not playing a Pareto-improving best-response, which implies
that one takes into account both players’ payoffs. Thus, survey responses may correlate
with other-regarding preferences. Particularly, participants with stronger tendency to
blame may also assign a greater weight 𝛾𝑖 to another person’s payoff. In that case, the
evidence in favor of hypotheses 2 and 3 could be partly attributed to other-regarding
preferences.
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We will test this alternative explanation in the following way. As we have seen in
section 3.3, the propensity to blame should not predict behavior in the dictator game,
prisoner’s dilemma, or public goods game. On the other hand, other-regarding preferences
can play a significant role in these games. Particularly, people with higher 𝛾𝑖’s should
(i) give more in the dictator game, (ii) be more willing to cooperate in the prisoner’s
dilemma, and (iii) contribute more in the public goods game. Therefore, using these three
games we can conduct the following placebo tests.

Hypothesis 5. Participants with higher Blame Index do not contribute more in the
public goods game (see section 3.3).

Hypothesis 6. Participants with higher Blame Index are not more likely to cooperate in
the prisoner’s dilemma (see section 3.3).

Hypothesis 7. Participants with higher Blame Index do not give more in the dictator
game (see section 3.3).

Indeed, Figure 9 and Table 5 show that survey responses have minimal predictive
power over behavior in these games. In the prisoner’s dilemma, participants with stronger
tendency to blame are more likely to cooperate for low levels of the cooperation cost,
𝑐, which is consistent with the other-regarding preferences explanation. However, the
differences are small and statistically insignificant. Also, for higher levels of 𝑐 and contrary
to the other-regarding preferences explanation, the difference is reversed and is somewhat
significant. In the public goods game, the propensity to blame has no predictive ability.
Last, in the dictator game, participants with stronger tendency to blame keep a larger
share for themselves, contrary to the other-regarding preferences explanation. Also, the
differences are not statistically significant.

The evidence on these three games also rules out the alternative explanation that the
results are driven by the participants’ heterogeneous sense of moral obligation to “do the
right thing.” If the Blame Index measured this sense of moral obligation, then we would
expect those with higher Blame Index to (i) give more in the dictator game, (ii) be more
willing to cooperate in the prisoner’s dilemma, and (iii) contribute more in the public
goods game.

4.2.5 An alternative test based on existing experimental evidence

This section presents existing experimental results in favor of strategic regret that (i) do
not employ survey responses and (ii) cannot be explained by other-regarding preferences.

Our analysis so far suggests that the way people experience regret in games differs
from how they experience it in single-agent settings. An alternative test of strategic
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Figure 9: Behavior of high versus low Blame Index subjects
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Notes: 𝑁 = 74. The lines represent the mean action for each group of participants with standard
error intervals. The group “high” (resp. “low”) is the subset of participants whose Blame Index
is above (resp. below) the median. In the dictator game, 1:4 means, for example, that one token
is worth 1 monetary unit to the dictator but 4 points to the receiver.

regret will check exactly that: whether participant behavior differs between a game and a
comparable individual decision-making problem, as predicted by strategic regret.28

Consider the following “single-agent” (i.e., non-strategic) version of the stag hunt game
presented in Figure 2 of section 3.2. Player 1 chooses between stag and hare as in the
standard game. However, player 2 is passive; it is common knowledge that instead of
choosing an action himself, nature chooses his action for him. Namely, the computer
chooses hare or stag with some exogenous probability. Denote by BASSTR

1 the size of the
basin of attraction of stag for player 1 in the stag hunt game as calculated in Claim 2, and
by BASSA

1 its corresponding value in the single-agent version (i.e., its value for 𝛽1 = 0,
since player 1 cannot blame nature).29 The following is an immediate corollary of Claim 2.

Claim 3. Let Λ ≤ 1. Then, BASSTR
1 is higher than (resp. equal to) BASSA

1 if 𝛼1𝛽1 > 0
(resp. if 𝛼1𝛽1 = 0).

Claim 3 shows that under strategic regret—but not under single-agent regret or
standard assumptions on preferences—people should be more willing to play stag in the

28I thank Séverine Toussaert for suggesting this test of strategic regret.
29STR (resp. SA) stands for “strategic” (resp. “single-agent”).
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Table 5: Behavior of high versus low Blame Index subjects in incentivized play

(a) Prisoner’s dilemma: Boschloo’s two-sided tests (𝑁 = 74)

Cooperate cost (𝑐) 10 20 30 40 50 60 70 80
𝑝-value 0.372 0.688 0.477 0.792 0.016 0.561 0.201 0.099

(b) Public goods game: Wilcoxon-Mann-Whitney two-sided tests (𝑁 = 74)

Factor (𝑘) 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
𝑝-value 0.422 0.506 0.551 0.776 0.887 0.849 0.505 0.381

(c) Dictator game: Wilcoxon-Mann-Whitney two-sided tests (𝑁 = 74)

Value to dictator:value to receiver 1:4 1:3 1:2 1:1 2:1 3:1 4:1
𝑝-value 0.414 0.181 0.521 0.248 0.226 0.612 0.505

Notes: the normal approximation with a continuity correction is used in the Wilcoxon-Mann-
Whitney tests. In the dictator game, 1:4 means, for example, that one token is worth 1 monetary
unit to the dictator but 4 points to the receiver.

stag hunt game than in its single-agent version. Particularly, BASSTR
𝑖 > BASSA

𝑖 . Indeed,
Bolton et al. (2016) experimentally elicit the size of the basin of attraction of stag in
both versions of a stag hunt game with a safe option (i.e., Λ = 1; also, 𝜆 = 3/2 in their
experiment) to find that B̂AS

STR
= 0.36, while B̂AS

SA
= 0.25 on average across subjects.30

That is, the maximum probability with which the other player (resp. the computer) can
play hare with the participant still willing to play stag is 0.36 (resp. 0.25) on average
in the standard game (resp. single-agent version).31 In other words, “on average,” if
the other side plays hare with probability between 0.25 and 0.36, then a participant’s
best-response depends on whether the other side is a human or a computer choosing
an action on behalf of a human. Namely, the participant prefers to play stag against a

30Chierchia et al. (2018) also find evidence pointing towards this direction. Bolton et al. (2016)
elicit B̂AS

STR
as follows. First, some participants choose actions in the stag hunt game. Then, other

participants (who do not know what proportion 𝑝 of the first group of subjects have chosen stag) choose
an action conditional on 𝑝 (i.e., they report their best-response function). Then, each participant’s action
is determined based on the actual proportion 𝑝, each participant is matched to another participant, and
payoffs are realized.

The difference in the distributions of BASSTR
𝑖 and BASSTR

𝑖 is statistically significant. The magnitude
of the difference can easily be explained by strategic regret. For example, 𝛼1 = 1 and 𝛽1 = 1/2 give
BASSTR

1 = 8/15. Also, BASSA
1 = 2/5, so BASSTR

1 − BASSA
1 = 2/15 ≈ 0.13. Remember that these

numbers are derived with baseline payoffs linear in monetary payoffs. Risk aversion can explain the lower
estimates of Bolton et al. (2016) in both versions of the game.

31A difference in participant beliefs between the probability with which a human plays stag and the
probability with which the computer does cannot explain this finding. By eliciting BAS, Bolton et al.
(2016) elicit each participant’s best-response for every possible belief she may hold over the probability
with which the other side (human or computer playing on behalf of a human, depending on the treatment)
plays hare.
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human but prefers to play hare against a computer playing on behalf of a human. Overall,
strategic regret explains the finding that stag is more robust to strategic uncertainty than
to uncertainty stemming from “nature.”

To the best of my knowledge, no other model or concrete mechanism has been proposed
that explains this finding. Bolton et al. (2016) note that social cognition research suggests
that games with aligned interests between players activate a trust mindset, which can
explain their finding. Strategic regret describes formally and precisely (i) the situations
where the trust mindset can be activated (i.e., when the division of responsibility mitigates
the potential of socially beneficial actions to generate regret), (ii) the effect of the activation
of the trust mindset on strategic behavior, and (iii) the psychological mechanism behind
the activation of the trust mindset.

5 Conclusion

Despite its significant role in decision-making, our understanding of regret in strategic
interactions is limited. Research on anticipated regret in games has so far followed the
single-agent regret approach, modeling regret as if in a single-agent context with the
other players’ actions treated as the state of the world. However, as Sugden (1985) notes,
the magnitude of an agent’s regret can depend not only on a comparison of ‘what is’
and ‘what might have been’ but also on the degree to which the agent blames herself
for her original decision. Indeed, in this paper, I have argued that in games, because
‘what might have been’ depends on what every player could have done differently, the
intensity of regret is influenced by the extent to which a player blames herself and is,
therefore, decreasing in the degree to which someone else is responsible. I call this the
strategic regret approach. Namely, I have posed that blame assigned to another player
for not playing—when available—a Pareto-improving (compared to her actual action)
best-response mitigates one’s own regret.

Experimental evidence lends direct support to both the assumptions and predictions of
strategic regret. Survey questions that elicit participants’ feelings in certain hypothetical
scenarios show that the subjects’ regret is indeed mitigated through blame assigned to
others for not playing a Pareto-improving best-response. Notably, participants’ anticipated
regret and blame elicited in certain games have predictive power—consistent with strategic
regret predictions—over their choices in vastly different games. Namely, participants who
according to survey responses tend to more strongly blame the other player (and thus,
regret less) choose higher numbers in the traveler’s dilemma and are more likely to play
stag in the stag hunt game. This implies that although often negatively valenced, blame
and the division of responsibility can actually induce people to take socially desirable
actions by mitigating those actions’ potential to generate regret. This result is in contrast
to the responsibility-alleviation effect of Charness (2000), according to which pro-social
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behavior is suppressed when responsibility is shifted.
Also, strategic regret can explain Bolton et al.’s (2016) finding that people take more

risks in a stag hunt game when they play against another person rather than when a
computer chooses the other player’s action. Nevertheless, consistent with theoretical
predictions, strategic regret does not seem to play a role in games with extreme conflict
of interest—particularly, the public goods game, prisoner’s dilemma, and dictator game,
where no unilateral change in a player’s action can cause a Pareto-improvement. This
feature differentiates strategic regret from standard other-regarding preferences and has
allowed us to experimentally disentangle the two.

I conclude that, when modified to account for blame and the division of responsibility
in games, regret offers novel insights into strategic behavior. More generally, the results
emphasize that models of individual decision-making may benefit from modifications when
applied in games. (Implicit) assumptions that are plausible in single-agent settings (e.g.,
that the agent does not blame the random state of the world) should be reconsidered in
strategic environments.

References

Araujo, F., Imas, A., and Wilson, A. (Forthcoming). Limits on regret as a tool for
incentive design. Journal of Political Economy: Microeconomics.

Bartling, B. and Fischbacher, U. (2011). Shifting the Blame: On Delegation and Respon-
sibility. The Review of Economic Studies, 79(1):67–87.

Basu, K. (1994). The Traveler’s Dilemma: Paradoxes of Rationality in Game Theory.
American Economic Review, 84(2):391–395.

Battigalli, P. and Dufwenberg, M. (2009). Dynamic psychological games. Journal of
Economic Theory, 144(1):1–35.

Battigalli, P., Dufwenberg, M., and Lin, S. (2022). Regret in games. Mimeo.

Bell, D. E. (1982). Regret in Decision Making under Uncertainty. Operations Research,
30(5):961–981.

Bolton, G. E., Feldhaus, C., and Ockenfels, A. (2016). Social interaction promotes risk
taking in a stag hunt game. German Economic Review, 17(3):409–423.

Brewer, N. T., DeFrank, J. T., and Gilkey, M. B. (2016). Anticipated regret and health
behavior: A meta-analysis. Health Psychology, 35(11):1264.

Charness, G. (2000). Responsibility and effort in an experimental labor market. Journal
of Economic Behavior & Organization, 42(3):375–384.

Chierchia, G., Nagel, R., and Coricelli, G. (2018). “Betting on nature” or “betting on
others”: anti-coordination induces uniquely high levels of entropy. Scientific reports,
8(1):3514.

28



Connolly, T. and Zeelenberg, M. (2002). Regret in decision making. Current Directions
in Psychological Science, 11(6):212–216.

Dal Bó, P., Fréchette, G. R., and Kim, J. (2021). The determinants of efficient behavior
in coordination games. Games and Economic Behavior, 130:352–368.

Diekmann, A. (1985). Volunteer’s dilemma. The Journal of Conflict Resolution, 29(4):605–
610.

Eijkelenboom, G. G., Rohde, I., and Vostroknutov, A. (2019). The impact of the level
of responsibility on choices under risk: the role of blame. Experimental Economics,
22:794–814.

El Zein, M., Bahrami, B., and Hertwig, R. (2019). Shared responsibility in collective
decisions. Nature Human Behaviour, 3(6):554–559.

Engelbrecht-Wiggans, R. (1989). The Effect of Regret on Optimal Bidding in Auctions.
Management Science, 35(6):685–692.

Engelbrecht-Wiggans, R. and Katok, E. (2007). Regret in auctions: Theory and evidence.
Economic Theory, 33(1):81–101.

Engelbrecht-Wiggans, R. and Katok, E. (2008). Regret and feedback information in
first-price sealed-bid auctions. Management Science, 54(4):808–819.

Engelbrecht-Wiggans, R. and Katok, E. (2009). A direct test of risk aversion and regret
in first price sealed-bid auctions. Decision Analysis, 6(2):75–86.

Fay, M. P. and Lumbard, K. (2021). Confidence intervals for difference in proportions for
matched pairs compatible with exact McNemar’s or sign tests. Statistics in Medicine,
40(5):1147–1159.

Festinger, L. (1964). Conflict, decision, and dissonance. Stanford U. Press.

Filiz-Ozbay, E. and Ozbay, E. Y. (2007). Auctions with Anticipated Regret: Theory and
Experiment. American Economic Review, 97(4):1407–1418.

Filiz-Ozbay, E. and Ozbay, E. Y. (2010). Anticipated loser regret in third price auctions.
Economics Letters, 107(2):217–219.

Fioretti, M., Vostroknutov, A., and Coricelli, G. (2022). Dynamic regret avoidance.
American Economic Journal: Microeconomics, 14(1):70–93.

Fischbacher, U. (2007). z-tree: Zurich toolbox for ready-made economic experiments.
Experimental Economics, 10(2):171–178.

Fogel, S. O. and Berry, T. (2006). The disposition effect and individual investor decisions:
the roles of regret and counterfactual alternatives. Journal of Behavioral Finance,
7(2):107–116.

Frydman, C. and Camerer, C. (2016). Neural evidence of regret and its implications for
investor behavior. The Review of Financial Studies, 29(11):3108–3139.

29



García-Pola, B. (2020). Do people minimize regret in strategic situations? A level-k
comparison. Games and Economic Behavior, 124:82–104.

Geanakoplos, J., Pearce, D., and Stacchetti, E. (1989). Psychological games and sequential
rationality. Games and Economic Behavior, 1(1):60–79.

Goeree, J. K. and Holt, C. A. (2001). Ten little treasures of game theory and ten intuitive
contradictions. American Economic Review, 91(5):1402–1422.

Grech, P. D. and Nax, H. H. (2020). Rational altruism? On preference estimation and
dictator game experiments. Games and Economic Behavior, 119:309–338.

Grech, P. D., Nax, H. H., and Soos, A. (2022). Incentivization matters: a meta-perspective
on dictator games. Journal of the Economic Science Association, 8(1):34–44.

Greenleaf, E. A. (2004). Reserves, regret, and rejoicing in open english auctions. Journal
of Consumer Research, 31(2):264–273.

Gurdal, M. Y., Miller, J. B., and Rustichini, A. (2013). Why blame? Journal of Political
Economy, 121(6):1205–1247.

Halpern, J. Y. and Pass, R. (2012). Iterated regret minimization: A new solution concept.
Games and Economic Behavior, 74(1):184–207.

Hamman, J. R., Loewenstein, G., and Weber, R. A. (2010). Self-interest through delegation:
An additional rationale for the principal-agent relationship. American Economic Review,
100(4):1826–46.

Heydari, P. (2024). Regret, responsibility, and randomization: A theory of stochastic
choice. Journal of Economic Theory, 217:105824.

Huang, W.-H. and Zeelenberg, M. (2012). Investor regret: The role of expectation
in comparing what is to what might have been. Judgment and Decision Making,
7(4):441–451.

Inman, J. J. and Zeelenberg, M. (2002). Regret in Repeat Purchase versus Switching
Decisions: The Attenuating Role of Decision Justifiability. Journal of Consumer
Research, 29(1):116–128.

Kats, A. and Thisse, J. F. (1992). Unilaterally competitive games. International Journal
of Game Theory, 21:291–299.

Knobe, J. and Burra, A. (2006). The folk concepts of intention and intentional action: A
cross-cultural study. Journal of Cognition and Culture, 6(1-2):113–132.

Koch, E. J. (2014). How Does Anticipated Regret Influence Health and Safety Decisions?
A Literature Review. Basic and Applied Social Psychology, 36(5):397–412.

Kreps, D. M. (1989). Nash Equilibrium. In Eatwell, J., Milgate, M., and Newman, P.,
editors, Game Theory, pages 167–177. Palgrave Macmillan UK, London.

Lagnado, D. A. and Channon, S. (2008). Judgments of cause and blame: The effects of
intentionality and foreseeability. Cognition, 108(3):754–770.

30



Lin, C.-H., Huang, W.-H., and Zeelenberg, M. (2006). Multiple reference points in investor
regret. Journal of Economic Psychology, 27(6):781–792.

Linhart, P. B. and Radner, R. (1989). Minimax-regret strategies for bargaining over
several variables. Journal of Economic Theory, 48(1):152–178.

Loomes, G. and Sugden, R. (1982). Regret Theory: An Alternative Theory of Rational
Choice Under Uncertainty. The Economic Journal, 92(368):805–824.

Loomes, G. and Sugden, R. (1987). Testing for regret and disappointment in choice under
uncertainty. The Economic Journal, 97:118–129.

Marcatto, F. and Ferrante, D. (2008). The Regret and Disappointment Scale: An
instrument for assessing regret and disappointment in decision making. Judgment and
Decision Making, 3(1):87–99.

Oexl, R. and Grossman, Z. J. (2013). Shifting the blame to a powerless intermediary.
Experimental Economics, 16(3):306–312.

Pieters, R. and Zeelenberg, M. (2005). On bad decisions and deciding badly: When
intention–behavior inconsistency is regrettable. Organizational Behavior and Human
Decision Processes, 97:18–30.

Pratt, J. W. (1959). Remarks on Zeros and Ties in the Wilcoxon Signed Rank Procedures.
Journal of the American Statistical Association, 54(287):655–667.

Ratan, A. and Wen, Y. (2016). Does regret matter in first-price auctions? Economics
Letters, 143:114–117.

Renou, L. and Schlag, K. H. (2010). Minimax regret and strategic uncertainty. Journal
of Economic Theory, 145(1):264–286.

Savage, L. J. (1951). The theory of statistical decision. Journal of the American Statistical
Association, 46(253):55–67.

Sheeran, P. and Orbell, S. (1999). Augmenting the theory of planned behavior: roles
for anticipated regret and descriptive norms. Journal of Applied Social Psychology,
29(10):2107–2142.

Sugden, R. (1985). Regret, recrimination and rationality. Theory and decision, 19:77–99.

van de Ven, N. and Zeelenberg, M. (2011). Regret aversion and the reluctance to exchange
lottery tickets. Journal of Economic Psychology, 32(1):194–200.

Wolfson, S. and Briggs, P. (2002). Locked into gambling: Anticipatory regret as a
motivator for playing the national lottery. Journal of Gambling Studies, 18:1–17.

Yang, Z. and Pu, Y. J. (2012). Existence and stability of minimax regret equilibria.
Journal of Global Optimization, 54(1):17–26.

Zeelenberg, M. (1999). Anticipated regret, expected feedback and behavioral decision
making. Journal of Behavioral Decision Making, 12(2):93–106.

31



Zeelenberg, M. and Beattie, J. (1997). Consequences of regret aversion 2: Additional
evidence for effects of feedback on decision making. Organizational Behavior and Human
Decision Processes, 72(1):63–78.

Zeelenberg, M., Beattie, J., van der Pligt, J., and de Vries, N. K. (1996). Consequences of
regret aversion: Effects of expected feedback on risky decision making. Organizational
Behavior and Human Decision Processes, 65(2):148–158.

Zeelenberg, M. and Pieters, R. (2007). A theory of regret regulation 1.0. Journal of
Consumer Psychology, 17(1):3–18.

Zeelenberg, M., Van Dijk, W. W., and Manstead, A. S. (1998). Reconsidering the Relation
between Regret and Responsibility. Organizational Behavior and Human Decision
Processes, 74(3):254–272.

32



Online Appendix

A Extensions and additional results

This section discusses extensions of the model, equilibrium predictions, as well as the
results on the Kreps game and the volunteer’s dilemma.

A.1 Equilibrium concepts

Denote by 𝑠−𝑖 ∈ 𝑆−𝑖 := ×𝑗∈𝑁∖{𝑖}𝑆𝑗 an action profile of all players except 𝑖. Using the
baseline and modified payoffs, respectively, we define the following types of equilibria of a
game 𝐺.

Definition 3. A Nash equilibrium (NE) with baseline payoffs of a game 𝐺 is an action
profile 𝜎* ∈ Δ such that 𝜎*

𝑖 ∈ arg max𝜎𝑖∈Δ(𝑆𝑖) 𝑢𝑖(𝜎𝑖,𝜎−𝑖) for every 𝑖 ∈ 𝑁 . If the cardinality
|supp(𝜎𝑖)| = 1 for every player 𝑖 ∈ 𝑁 , then it is called a pure Nash equilibrium (PNE).

Definition 4. A regret equilibrium (RE) of a game 𝐺 is a Nash equilibrium with modified
payoffs; that is, an action profile 𝜎* ∈ Δ such that 𝜎*

𝑖 ∈ arg max𝜎𝑖∈Δ(𝑆𝑖) 𝑚𝑖(𝜎𝑖,𝜎−𝑖) for
every player 𝑖 ∈ 𝑁 . If the cardinality |supp(𝜎*

𝑖 )| = 1 for every 𝑖 ∈ 𝑁 , then it is called a
pure regret equilibrium (PRE).

With attention restricted to static games without chance moves, the RE concept is
the same as the one considered in Battigalli et al. (2022). I will call a NE with baseline
payoffs simply a NE. Denote by 𝑁𝐸(𝐺) and 𝑅𝐸(𝐺) the sets of action profiles satisfying
definitions 3 and 4 in a game 𝐺, respectively. The corresponding subsets of pure equilibria
are 𝑃𝑁𝐸(𝐺) and 𝑃𝑅𝐸(𝐺), which Proposition 2 shows to coincide.

Proposition 2. For any game 𝐺, the set of pure NE and the set of pure RE coincide,
𝑃𝑁𝐸(𝐺) = 𝑃𝑅𝐸(𝐺).

Thus, regret may alter or augment the set of NE by changing the set of mixed—but
not pure—equilibria. This is because given belief consistency, (strategic) uncertainty
vanishes in pure equilibria. In more detail, notice that by pure best-responding (in baseline
payoff terms) a player both maximizes her baseline payoff and has no regret. Thus, each
player pure best-responding (in baseline payoff terms) is a PRE. Conversely, a pure action
profile not being a PNE means that a player can deviate (to a best-response) to increase
her baseline payoff. But deviating to a best-response also induces no regret. Thus, the
deviation also increases her modified payoff. Therefore, a pure action profile that is not a
PNE is not a PRE either.

But then, can regret alter the set of mixed equilibria, and, if so, when? Proposition 3
states that under single-agent regret, it cannot; in that case, not only the pure but also
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the mixed NE and RE sets coincide.32 On the other hand, with strategic regret, the mixed
NE and RE can differ.

Proposition 3. The following statements hold:

(i) If 𝛽1 = 𝛽2 = 0, then 𝑁𝐸(𝐺) = 𝑅𝐸(𝐺) for any game 𝐺.

(ii) However, there exist (𝛽1,𝛽2) ̸= (0,0) and game 𝐺 such that 𝑁𝐸(𝐺) ̸= 𝑅𝐸(𝐺).

A.2 Strategic regret reconciles experimental results with equilibrium predic-
tions in the traveler’s dilemma

Proposition 3 has shown that—unlike single-agent regret—strategic regret does alter the
(mixed) equilibrium set of some games. However, this change could in principle be in the
“wrong” direction. Therefore, we now study whether strategic regret changes equilibrium
predictions in a way that brings them closer to existing experimental results.

In the traveler’s dilemma, the unique rationalizable outcome under baseline payoffs
(and thus, unique NE) is both players choosing the lowest number. Under single-agent
regret, this remains not only the unique RE (as implied by Proposition 3) but also the
unique rationalizable outcome. For simplicity in numerical simulations, let the players
choose numbers in {11,12, . . . ,20}.

Claim 4. Consider the traveler’s dilemma with single-agent regret, 𝛽1 = 𝛽2 = 0. The
unique RE and unique rationalizable outcome under modified payoffs is (11,11).

However, experimental results show that players in fact choose higher amounts, which
decrease with 𝑏 (e.g., see Capra et al., 1999; Goeree and Holt, 2001).33 Table 6 presents the
number of RE (including the unique NE) for different values of 𝑏 and regret parameters.
As shown already, the only single-agent RE is (11,11). On the other hand, with strategic
regret (𝛽1 = 𝛽2 > 0) apart from the PNE (which by Proposition 2 is also the unique PRE)
there are mixed RE where players choose higher amounts. Particularly, given 𝛼 and 𝛽,
there is a threshold such that if the bonus/penalty parameter 𝑏 is above that threshold,
only the PNE survives. The threshold is relaxed as 𝛼 and/or 𝛽 increase. Strategic regret
thus brings theoretical predictions closer to experimental results, which single-agent regret
does not.

A.3 The Kreps game

Theoretical predictions. Goeree and Holt (2001) study the game presented in Figure
10a for 𝛿 = 330, a game similar to the one presented in Kreps (1989). The game possesses

32This is actually true for 𝑛-player games (studied in section A.4 of the appendix). Part (i) of the
proposition replicates the result of Battigalli et al. (2022) for static games without chance moves.

33The players’ sophistication seems inadequate in explaining these results, as even game theory experts
choose high amounts (Becker et al., 2005).
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Table 6: Number of RE in the traveler’s dilemma for various values of 𝑏 and regret parameters

𝛼 𝛽
𝑏

1.5 2 2.5 3 3.5 4 4.5 5

# of RE

1 0.5 73 67 51 1 1 1 1 1
0.5 0.5 374 121 1 1 1 1 1 1
1 1 138 78 93 31 1 1 1 1

0.5 1 441 109 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1

0.5 0 1 1 1 1 1 1 1 1
Notes: in every row 𝛼1 = 𝛼2 = 𝛼 and 𝛽1 = 𝛽2 = 𝛽. The lrs algorithm (Avis et al., 2010) is used
for equilibrium computation. All RE are symmetric.

three NE: two pure, (T,L) and (B,R), and one where both players randomize; the column
one between L and M. However, both in Kreps’ (1989) informal experiments and in Goeree
and Holt’s (2001) incentivized lab experiments, the majority of column players choose
N, an action that is not part of any NE, while M is played with very low probability.34

Claim 5 studies the equilibria of that game under our canonical specification of regret
given in (2).

Figure 10: The Kreps game

(a) Baseline/monetary payoffs

𝐿 𝑀 𝑁 𝑅
𝑇 500,350 300,345 310,𝛿 320,50
𝐵 300,50 310,200 330,𝛿 350,340

(b) Modified payoffs

L M N R

𝑇 500,350 300,345 − 5𝛼2 310,𝛿 − (350 − 𝛿)𝛼2 320, 50 − 10𝛼2·
(30 − 29𝛽2)

𝐵
300 − 10𝛼1·
(20 − 5𝛽1) ,50 − 10𝛼2·

(29 − 30𝛽2) 310,200 − 140𝛼2 330,𝛿 − (340 − 𝛿)𝛼2 350,340

Notes: the modified payoffs are given for 𝛽2 ≤ 29/30 and 𝛽1 ≥ 1/6 so that expressions are not
too long.

Claim 5. Consider the Kreps game with 𝛿 ∈ [200, 330], 𝛽2 ≤ 29/30, and 𝛼2 ≤ 1.

(i) There exist two PNE: (𝑇,𝐿) and (𝐵,𝑅).
34While N can be seen as a safe action, risk aversion of the column player cannot explain this finding.

This is because L needs to be played with positive probability for the row player to be willing to mix.
But for L to be a best-response, T needs to be played with extremely high probability for otherwise M is
superior. But if T is played with extremely high probability, risk aversion (of the column player) plays a
negligible role.
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(ii) If 𝛽2 = 0, there exists a unique mixed RE; in this RE both players mix, the column
one between L and M.

(iii) There exists 𝛿* such that for 𝛽2 > 0, if 𝛿 > (resp. <) 𝛿*, then there exists a unique
mixed RE; in this RE both players mix, the column one between L and N (resp. L
and M), where 𝛿* is decreasing in 𝛽2.

When 𝛿 > 𝛿* in the mixed RE, N is played with high probability, as seen in existing
experimental results.35 For example, for 𝛼2 = 1 and 𝛽2 = 9/10, 𝛿* = 308.75 and 𝜎2(𝑁) =
71/75. Thus, strategic—unlike single-agent—regret can explain the high frequency with
which N is played in experiments and the low one with which M is played. At the same
time, strategic regret offers an intuitive comparative statics prediction. For 𝛿 high enough
the safe option N is played in equilibrium (and M is not), while for 𝛿 low, the risky action
M is played in the mixed equilibrium. Particularly, the threshold level 𝛿* that 𝛿 needs to
surpass for N to be played in equilibrium is decreasing in 𝛽2.36

Experimental results. Claim 5 gives rise to hypothesis 8, which is indeed supported
by the data.37

Hypothesis 8. The frequency with which 𝑁 (resp. 𝑀) is played in the Kreps game
increases (resp. decreases) with 𝛿.

Table 7 shows the distribution of outcomes in the Kreps game for various values of the
parameter 𝛿. As predicted under strategic regret, the frequency with which 𝑁 is played
is increasing in 𝛿. Namely, for 𝛿 high enough, play is concentrated on actions 𝐿 and 𝑁

with 𝑁 played with high probability. For 𝛿 low, play is concentrated on 𝐿 and 𝑀 . These
results are consistent with mixed strategic RE predictions, but not with predictions under
single-agent regret or standard assumptions on preferences.

A.4 A simple extension to 𝑛-person games

This section presents a simple extension of the model to 𝑛-person games using the following
definition of the blame payoff. Given an action profile 𝑠, each player 𝑖 identifies the player
𝑗 who by individually best-responding to 𝑠−𝑗 could have increased player 𝑖’s baseline
payoff the most. Then, player 𝑖 assigns blame to that player as in two-player games.

35𝛿* ≡ 50 + 300[30(1 + 𝛼2) − 59𝛼2𝛽2]/[31(1 + 𝛼2) − 60𝛼2𝛽2] and the probability is given by 𝜎2(𝑁) =
[20 + 𝛼1(20 − 5𝛽1)]/[22 + 𝛼1(20 − 5𝛽1 + max{2 − 19𝛽1, 0})].

36Here is why this happens. Starting from 𝛽2 = 0 (in which case M is played in the mixed RE), an
increase in 𝛽2 causes the payoff of the column player at (B,L) to increase. This increases the probability
with which B has to be played to make the column player indifferent between L and M. But as the
probability of 𝐵 increases, 𝑁 becomes more attractive compared to M. When 𝛿 passes the threshold 𝛿*,
𝑁 is played instead of 𝑀 in the mixed RE.

37Since the experiment already lasts approximately 90 minutes, participants played one-shot games,
although equilibrium predictions would be better tested with experienced subjects.
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Table 7: Distribution of outcomes in the Kreps game

(a) 𝛿 = 250

𝐿 𝑀 𝑁 𝑅

𝑇 34.7% 36.6% 7.9% 3%
𝐵 9.9% 6.9% 1% 0%

(b) 𝛿 = 270

𝐿 𝑀 𝑁 𝑅

𝑇 24.8% 26.7% 25.7% 4%
𝐵 5% 7.9% 5% 1%

(c) 𝛿 = 290

𝐿 𝑀 𝑁 𝑅

𝑇 18.8% 18.8% 41.6% 3%
𝐵 4% 1% 10.9% 2%

(d) 𝛿 = 310

𝐿 𝑀 𝑁 𝑅

𝑇 9.9% 5% 51.5% 3%
𝐵 5.9% 3% 20.8% 1%

(e) 𝛿 = 330

𝐿 𝑀 𝑁 𝑅

𝑇 8.9% 0% 53.5% 3%
𝐵 4% 2% 28.7% 0%

Definition 5. The blame payoff for player 𝑖 is 𝑢𝑏
𝑖(𝑠𝑖,𝑠−𝑖) := max{𝑢𝑏𝑎

𝑖 (𝑠𝑖,𝑠−𝑖), 𝑢𝑖(𝑠𝑖,𝑠−𝑖)},
where 𝑢𝑏𝑎

𝑖 (𝑠𝑖,𝑠−𝑖) := max𝑗∈𝑁∖{𝑖}{max𝑠′
𝑗∈𝑃 𝐵𝑅𝑗(𝑠−𝑗) 𝑢𝑖(𝑠′

𝑗,𝑠−𝑗)} is the payoff 𝑖 would receive
if a player “most to blame” had by best-responding increased 𝑖’s baseline payoff.

A player is “most to blame” if by best-responding, she could have increased player 𝑖’s
baseline payoff the most (compared to any other player individually best-responding).38

Modified payoffs are then given by (1) and (2). Notice that a player is assumed to blame
another for not playing a mutually beneficial best-response, which—when there are more
than two players—may not be Pareto-improving (i.e., a third player could be harmed
by that best-response). An alternative formulation could have a player assign blame to
another only for not playing a Pareto-improving best-response. In the volunteer’s dilemma,
any mutually beneficial (for two players) best-response is also Pareto-improving. In any
case, a careful analysis of regret and blame in 𝑛-person games is left for future work.

A.5 The volunteer’s dilemma

Theoretical predictions. We now use the extension of section A.4 to derive theoretical
predictions for the 𝑛-player volunteer’s dilemma, as described in Diekmann (1985). There
are 𝑛 players simultaneously choosing whether to volunteer. If none of the players
volunteers, then each receives a baseline payoff normalized to 0. If at least one player
volunteers, then (i) any volunteering player receives baseline payoff 𝜑1 > 0 and (ii) any
non-volunteering player receives baseline payoff 𝜑2 > 𝜑1, as she does not incur the cost
𝑐 := 𝜑2 − 𝜑1 of volunteering.

Claim 6 characterizes a player’s best-response correspondence.
38Notice that there can be multiple players “most to blame.”

A5



Claim 6. Consider the volunteer’s dilemma with regret given by (2) and let 𝜉𝑖 be the
probability with which player 𝑖 expects at least one other player to volunteer. Then,
there exists 𝜉𝑖 such that volunteering is optimal for 𝑖 if and only if 𝜉𝑖 ≤ 𝜉𝑖, where 𝜉𝑖 is (a)
decreasing in 𝛽𝑖 for 𝛽𝑖 ∈ [0, 𝜑1/𝜑2] and constant in 𝛽𝑖 for 𝛽𝑖 ∈ [𝜑1/𝜑2,1] provided 𝛼𝑖 > 0,
and (b) decreasing in 𝛼𝑖 provided 𝛽𝑖 > 0.39

Similar to BAS𝑖 in the stag hunt game, 𝜉𝑖 can be interpreted as a measure of the
robustness of volunteering to strategic uncertainty. Claim 6 shows that the more a player
𝑖 tends to blame (i.e., 𝛽𝑖 high), the less willing she is to volunteer.40 This is because the
only outcome where there is scope for blame is when no player has volunteered. In this
case, a player’s regret for not volunteering herself is mitigated through blame put on the
other player for not volunteering either.

Experimental results. We will now use the volunteer’s dilemma to show that there
are limits to blame.41 Claim 6 gives rise to hypothesis 9.

Hypothesis 9. Participants with higher Blame Index are less likely to volunteer in the
volunteer’s dilemma.

Hypothesis 9 is not supported. Figure 11 shows no predictive power of the Blame
Index over choices in either the two- or the four-player volunteer’s dilemma. A natural
explanation is the following. The only case where a player 𝑖 may blame another player
𝑗 is (in theory) when nobody has volunteered. But in that case, what 𝑗 could have
done differently is exactly what 𝑖 herself could have done. It makes sense that people
do not blame others for not volunteering when they themselves have not volunteered.
Put differently, when nobody volunteers, each player has equal responsibility for the bad
outcome, and thus, does not blame the others. This intuition is consistent with Çelen et
al.’s (2017) finding that in public goods games, a player 𝑖 tends to blame (i.e., punish)
another player 𝑗 when 𝑗’s contribution is lower than 𝑖’s. Section A.6 formalizes this idea.

This explanation is also supported by the evidence from the two games where blame
does have predictive power over incentivized play. In the traveler’s dilemma, the cases
where player 𝑖 blames player 𝑗 is when the former has chosen a number that is higher
(by at least 2) compared to the number chosen by 𝑗. In that case, given 𝑖’s action, 𝑗

39𝜉𝑖 ≡ [1 + (1 + 𝛼𝑖)(𝜑2 − 𝜑1)/(𝜑1 + 𝛼𝑖 max {𝜑1 − 𝛽𝑖𝜑2,0})]−1 ∈ (0,1). If 𝛼𝑖𝛽𝑖 = 0, then 𝜉𝑖 = 𝜑1/𝜑2.
40Also, the attractiveness of volunteering to player 𝑖 decreases with regret intensity 𝛼𝑖. While both

volunteering and not volunteering can generate regret (when at least one more player volunteers or no
player volunteers, respectively), the former type of regret dominates, which makes 𝜉𝑖 decreasing in 𝛼𝑖 (if
𝛽𝑖 > 0). This means that a higher weight 𝛼𝑖 on regret tends to induce player 𝑖 not to volunteer, but only
as long as player 𝑖 has some tendency to blame others. Otherwise, 𝛼𝑖 does not play a role.

41Participants played the volunteer’s dilemma in groups of two or four with 𝑐 being the cost of
volunteering. The payoff if nobody volunteers was 40. The gross payoff if at least one player volunteers
was 200.
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Figure 11: Behavior of high versus low Blame Index subjects in the volunteer’s dilemma

(a) Two-player volunteer’s dilemma
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(b) Four-player volunteer’s dilemma
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Notes: panel (a): 𝑁 = 50, panel (b): 𝑁 = 52. The lines represent the percentage of subjects
that volunteered in each group of participants with standard error intervals. The group “high”
(resp. “low”) is the subset of participants whose Blame Index is above (resp. below) the median.

could have acted differently (i.e., best-responded by undercutting 𝑖 by exactly 1, causing
a Pareto improvement) in a way that 𝑖 could not have, given 𝑗’s action.

The stag hunt game with a safe option offers even stronger evidence in favor of this
explanation, thanks to its similarity to a two-player volunteer’s dilemma. Notice that this
stag hung game is equivalent to a two-player volunteer’s dilemma with only the following
difference: two volunteers (i.e., players who choose stag)—instead of one—are needed for
the benefits of volunteering (i.e., playing stag) to materialize. Then, the only case where
player 𝑖 blames player 𝑗 is when the former has played stag while the latter has played
hare. In that case, given 𝑖’s action, 𝑗 could have acted differently (i.e., best-responded by
playing stag, causing a Pareto improvement) in a way that 𝑖 could not have, given 𝑗’s
action.

A.6 The limits of blame: a simple generalization of strategic regret

This section presents a generalization of strategic regret to reconcile the theory with
the evidence on the volunteer’s dilemma. Under this generalization, the blame player 𝑖

assigns to player 𝑗 (for not playing a Pareto-improving best-response) can be mitigated
when 𝑖 herself could have played a Pareto-improving best-response. For simplicity, restrict
attention to two-player games and normalize all baseline payoffs to be positive. The blame
payoff for player 𝑖 is given by

𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗) := 𝑢𝑖(𝑠)

(︃
1 + max

{︃
𝑢𝑏𝑎

𝑖 (𝑠𝑖)
𝑢𝑖(𝑠) − max

{︃
𝛾𝑖

𝑢𝑏𝑎
𝑗 (𝑠𝑗)
𝑢𝑗(𝑠) , 1

}︃
, 0
}︃)︃

,

where for each player 𝑖, 𝑢𝑏𝑎
𝑖 (𝑠𝑖) ≡ max𝑠′

𝑗∈𝑃 𝐵𝑅𝑗(𝑠𝑖) 𝑢𝑖(𝑠𝑖,𝑠
′
𝑗) and 𝛾𝑖 ∈ [0,1] measures how

strongly blame (assigned by 𝑖 to 𝑗) is mitigated when 𝑖 herself could have played a
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Pareto-improving best-response.42 For 𝛾𝑖 = 0, this reduces to our standard definition of
the blame payoff.

Let 𝛾𝑖 = 1, assume that action profile 𝑠 is played and that by best-responding 𝑗 could
have increased 𝑖’s baseline payoff by percentage 𝑥. This tends to make 𝑖 blame 𝑗. However,
if by best-responding 𝑖 could also have increased 𝑗’s baseline payoff by percentage 𝑥 or
higher, then 𝑖 does not blame 𝑗. This means that for 𝛾𝑖 = 1, 𝑖 never blames player 𝑗 in
the volunteer’s dilemma, so 𝑖’s best-response does not depend on 𝛼𝑖 or 𝛽𝑖.

At the same time, theoretical predictions for the traveler’s dilemma and the stag
hunt game with Λ ≤ 1 remain the same under any parametrization of the generalized
model. That is because in these games, in all cases where 𝑖 can blame 𝑗 for not playing
a Pareto-improving best-response, 𝑖 does not have a Pareto-improving best-response.
Namely, for any action profile 𝑠 such that 𝑢𝑏𝑎

𝑖 (𝑠𝑖) > 𝑢𝑖(𝑠) it holds that 𝑢𝑏𝑎
𝑗 (𝑠𝑗) ≤ 𝑢𝑗(𝑠).

Therefore, blame assigned by 𝑖 to 𝑗 is never mitigated regardless of the value of 𝛾𝑖 ∈ [0,1],
so the theoretical predictions of section 3 still go through.43

B Additional analyses of experimental data

B.1 Affective reaction and control item responses

Figure 12 presents the mean responses to the affective reaction and control item of the RBS.
These suggest that in all games there is on average a significant (anticipated) emotional
reaction to the outcome of the game.

We also verify that responses to the affective reaction item are negatively correlated
with those to the control item, as seen in Table 8.

Table 8: RBS results: correlation between affective reaction and control item responses

Correlation coefficient
Game

SAR 1 SAR2 STR1 STR2
Pearson -0.26 -0.39 -0.19 -0.25

Kendall’s 𝜏𝑏 -0.25 -0.28 -0.24 -0.18
Notes: all coefficients are significant at the 1% level based on two-sided tests under the asymptotic
𝑡 approximation (with a continuity correction).

42Notice that because ratios of baseline payoffs are used in the definition of the blame payoff, linear
transformations of 𝑗’s baseline payoffs will not affect 𝑖’s blame payoff. However, affine transformations
will.

43This modification of blame has no bite in the hypothetical scenario (described in the survey) for
game STR1, but it does play a role in the scenario for game STR2.
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Figure 12: RBS results: affective reaction and control items
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Notes: bars of mean responses with standard error intervals.

B.2 Principal component analysis loadings

Table 9 presents the loadings in the principal component analysis that produced the Blame
Index.

Table 9: PCA loadings in the Blame Index

Game
RBS item

regret blame internal external choice between
attribution attribution counterfactuals

STR 1 -0.28 0.32 -0.27 0.37 -0.36
STR 2 -0.26 0.32 -0.29 0.37 -0.31

Notes: before the principal component analysis was performed, responses to each of the 20 items
were centered and scaled to have zero mean and unit variance.

B.3 Non-parametric tests on the predictive power of RBS survey responses
over behavior in the stag hunt game

Using Fisher’s exact test, Table 10 verifies the result of Table 3b that subjects with high
Blame Index choose stag more frequently than subjects with low Blame Index.
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Table 10: Behavior of high versus low Blame Index subjects in the stag hunt game: Fisher’s
exact one-sided tests

Stag cost (𝑐) 10 20 30 40 50 60 70 80
𝑝-value 0.877 0.706 0.358 0.072 0.008 0.017 0.036 0.259

B.4 Additional tests on the relationship between behavior in the traveler’s
dilemma and behavior in the stag hunt game

Table 11 shows that the results of Table 4 are robust when we instead use a non-parametric
test. Namely, for 𝑏 and 𝑐 not too low, participants who played stag in the stag hunt game
chose higher numbers in the traveler’s dilemma. Table 11 shows that the difference is
large: the median number chosen by the former is larger by about 30 to 100 (compared to
the median number chosen by the latter) depending on the parameters of the games.

B.5 Order effects

Table 12 shows that the null hypothesis that no order/priming effects exist for the traveler’s
dilemma cannot be rejected at the 10% level for any value of 𝑏. Similarly, Table 13 and
Figure 13 show that the null hypothesis that no order/priming effects exist for the stag
hunt game cannot be rejected for any value of 𝑐. Filling in the RBS questionnaire before
playing the traveler’s dilemma and stag hunt game does not seem to affect behavior.

Figure 13: Order effects in the stag hunt game
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Table 11: Number chosen in the traveler’s dilemma: participants who played stag in the stag
hunt game versus participants who played hare

(a) Difference in median number chosen (i.e., median number chosen by those who played stag minus the
median number chosen by those who played hare)

Stag cost (𝑐)
10 20 30 40 50 60 70 80

5 23 -1 0 -1.5 4 2 1.5 0
10 -6 24 9 4.5 28 9.5 11.5 10

Bonus/ 15 -23 20 33 26.5 40 30 34.5 27.5
penalty 20 -40 1 48 28.5 45 30 33.5 29

(𝑏) 30 -42 50 49 49 51 53 55 64.5
40 -80 30 55 52.5 70 61 63 78.5
50 -105 15 20 39 69 68.5 68.5 87
60 -111 10 20 49.5 65 62.5 89.5 99.5

(b) Wilcoxon-Mann-Whitney one-sided 𝑝-values

Stag cost (𝑐)
10 20 30 40 50 60 70 80

5 0.26 0.4 0.39 0.64 0.08 0.52 0.55 0.6
10 0.61 0.16 0.07 0.26 0 0.04 0.03 0.04

Bonus/ 15 0.96 0.41 0.06 0.09 0 0.01 0.01 0.01
penalty 20 0.89 0.24 0.03 0.09 0 0.02 0.01 0.01

(𝑏) 30 0.72 0.1 0.01 0.01 0 0 0 0
40 0.92 0.21 0.02 0.01 0 0 0 0
50 0.87 0.18 0.01 0 0 0 0 0
60 0.89 0.32 0.05 0 0 0 0 0

Notes: 𝑁 = 152. In the Wilcoxon-Mann-Whitney test, the alternative hypothesis is that if we
randomly select a participant who played stag and one who played hare, the probability that
the former chose a higher number in the traveler’s dilemma (than the latter) is higher than the
probability that the latter chose a higher number in the traveler’s dilemma (than the former).

C Participant instructions

This section presents the participant instructions. After the instructions were read, the
ability of participants to read two-player game matrices was tested before they completed
any survey or played any game. Before playing the traveler’s dilemma, volunteer’s dilemma,
stag hunt game, and public goods game, participants answered comprehension questions
on how the game works.44 The instructions for treatment 1 follow:
“Welcome to our experiment!

44In all comprehension tests, only after they answered correctly were the subjects allowed to proceed.
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Table 12: Order effects in the traveler’s dilemma: Kolmogorov-Smirnov test 𝑝-values

𝑏
5 10 15 20 30 40 50 60

0.287 0.128 0.222 0.197 0.831 0.137 0.185 0.23
Notes: for each value of 𝑏, the null hypothesis is that the numbers chosen in the traveler’s
dilemma in the treatment where participants answered the SAR portion of the RBS first are
drawn from the same distribution as the numbers chosen in the treatment where participants
first played the traveler’s dilemma and stag hunt game, and then completed the SAR portion of
the RBS. Since the distributions are discrete, simulated (two-sided) 𝑝-values are reported with
10,000 replicates used in the Monte Carlo simulation.

Table 13: Order effects in the stag hunt game: exact test two-sided 𝑝-values

𝑐
10 20 30 40 50 60 70 80

Fisher’s exact test 1 1 0.437 0.385 0.715 0.541 0.521 0.817
Boschloo’s test 1 0.892 0.397 0.364 0.691 0.499 0.481 0.769

Notes: for each value of 𝑐, the null hypothesis is that the percentage of participants that play
stag in the treatment where participants answered the SAR portion of the RBS first is equal
to the corresponding percentage in the treatment where participants first played the traveler’s
dilemma and stag hunt game, and then completed the SAR portion of the RBS.

C.1 General guidelines

During this experiment you and other participants will be asked to answer questions
and make decisions in various different settings. At the end of the experiment, you will
receive a sum of money that will depend both on your decisions and the other participants’
decisions during the experiment. Therefore, it is important that you read these instructions
carefully so that you can make informed decisions during the experiment.

The experiment will last approximately 90 minutes; even if a participant finishes
earlier, they will have to wait until the experiment has concluded to receive their payment.
Thus, it is best to spend your time considering carefully the different scenarios presented
in the experiment.

No communication with the other participants is allowed during the experiment. Any
participant who fails to follow this rule will be excluded from the experiment and will
receive no payment. Should you have any questions, please raise your hand.

During the experiment, the currency that is used will not be dollars but points. Your
earnings will therefore initially be calculated in points. The total number of points that
you accumulate during the experiment will be paid to you in dollars (you will get a receipt
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which you will then bring to the Office of the Bursar to receive money) at a rate of:

1 point = 0.04 dollars (25 points = 1 dollar).

C.2 What is a game?

A game is a situation where each of multiple (2 or more) participants makes decisions
(independently and privately) and the number of points that each participant earns
depends (based on well-defined rules) on the actions of that participant and the actions of
the other participants in the game.

When there are two participants that take part in a game, it is sometimes (but not
always) useful to present that game in a table. For example, a game with two players
where each player has 3 actions to choose from can be represented as follows.

𝐿 𝑀 𝑅

𝑇 𝑎1,𝑎2 𝑏1,𝑏2 𝑐1,𝑐2

𝐶 𝑑1,𝑑2 𝑒1,𝑒2 𝑓1,𝑓2

𝐵 𝑔1,𝑔2 ℎ1,ℎ2 𝑖1,𝑖2

where 𝑎1,𝑎2,𝑏1,𝑏2, . . . ,𝑖1,𝑖2 are some numbers that differ from game to game (in a
specific game you will see what these numbers are).

In this game, the row player has three actions to choose from: 𝑇 , 𝐶, and 𝐵. The
column player also has three actions to choose from, 𝐿, 𝑀 , and 𝑅. Thus, there are
3 × 3 = 9 possible outcomes in this game (e.g., a possible outcome is that the row player
chooses 𝐶 and the column player chooses 𝑅).

Each of the nine cells inside the table then gives the number of points each player will
earn in each possible outcome of the game. The first number in the cell is the amount
of points earned by the row player and the second number in the cell is the amount of
points earned by the column player. For example, if the row player chooses action 𝐶 and
the column player chooses action 𝑅, then the row player earns 𝑓1 points and the column
player earns 𝑓2 points from this game.

C.3 Types of settings and questions that you will face during the experiment

There are two types of items in this experiment. You will first complete some items of
the first type, then some of the second, and finally again some of the first type. Before
completing items you will sometimes be asked to answer questions that will test your
understanding of the item. Only after you have answered correctly will you be allowed to
complete the items.

In the first item type, a hypothetical scenario is described to you and you are asked
to describe your thoughts, feelings, and emotions in that scenario. You will do so by
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denoting your level of agreement with various statements. For this type of item, you will
be required to spend at least 3 minutes on a scenario before you can proceed to the next
scenario (but you are free to spend more than 3 minutes). The button “Continue” will
only appear on your screen after said amount of time has passed.

In the second item type, you are randomly matched with another participant, and a
game is described to both of you. Each of you then is asked to individually and privately
choose an action in the game. You will play 3 different games and you will play each
game multiple times. For each of the three games, one of these multiple rounds will be
randomly selected by the computer to be the pay round. You will be rewarded points
only for that pay round (and not for the other times that you played the specific game).
Thus, the total number of points that you accumulate in this experiment will be the sum
of three numbers (one number for each of the 3 games).

Each time that you play a game you are randomly matched with a participant. Thus,
in most cases, the participant that you play a game with will not be the same as the
participant(s) that you played that game with before (unless by chance you are again
matched with the same participant(s), which happens with low probability). After you
have finished playing all the rounds of a game, you will see what the participant you were
matched with in each round chose and which round has randomly been chosen to be the
pay round.

C.4 Games that you will play (second item type)

C.4.1 Game 1 (8 rounds)

You will be repeatedly and randomly matched with another participant to play the
following game. Each of you will privately choose a number (integer) between 80 and 200;
that is, any of the following numbers: 80, 81, 82, . . . , 198, 199, 200.

• If you both choose the same number, then each of you earns points equal to that
number.

• If you choose different numbers, then each of you earns points equal to the lowest of
the two numbers plus a bonus or minus a penalty, which is determined as follows:

– if you have chosen the lowest number of the two, then you receive a bonus of
additional 𝑏 points, and the other participant’s points are reduced by a penalty
of 𝑏 points (the value of 𝑏 will change from round to round and will be shown
on everyone’s screen).

– if you have chosen the higher number of the two, then your points are reduced
by a penalty of 𝑏 points, and the other participant receives a bonus of additional
𝑏 points.
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For example, if you choose the number 135, the other participant chooses the number
145, and 𝑏 = 5, then you receive 135 + 5 = 140 points, while the other participant receives
135 − 5 = 130 points.

C.4.2 Game 2 (8 rounds)

You will be repeatedly and randomly matched with 1 other participant (so that you are a
group of 2 people in total) to play the following game.

Both you and the other person in your group will (individually and privately) decide
whether to incur a cost to undertake an action (i.e., invest) that can benefit all the people
in the group. The full benefit from this action is available to all the people in the group if
both people in the group undertake the costly action.

The cost 𝑐 of taking the action will be the same for all people in each group. In the
game, each player in the group decides whether to invest by incurring a cost of 𝑐 points
(the value of 𝑐 will change from round to round and will be shown on everyone’s screen).
If a player does not invest, then that player incurs no cost.

If both people in your group decide to invest, both people in the group will receive
200 points. Thus, if both people (in a specific group) invest, then each person (in that
specific group) earns 200 − 𝑐 points.

If in a specific group none or only one person invests, then each person in that group
earns 100 points (minus investment costs, when applicable).

For example, if 𝑐 = 20 and you invest and the other person in your group does not
invest, then you earn 100 − 20 = 80 points and the other person (who does not incur the
cost) earns 100 points.

The game can be presented in a table as follows:

invest not invest
invest 200 − 𝑐,200 − 𝑐 100 − 𝑐,100

not invest 100,100 − 𝑐 100,100

C.4.3 Game 3 (5 rounds)

You will be repeatedly and randomly matched with other participants to play the following
game under various values of the parameter 𝑥 (the value 𝑥 will change from round to
round and will be shown on everyone’s screen).

𝐿 𝑀 𝑁 𝑅

𝑇 500,350 300,345 310,𝑥 320,50
𝐵 300,50 310,200 330,𝑥 350,340
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One of you will randomly be assigned the role of the row player and the other the role
of the column player. All the times that you will play the game you will have the same
role, either row or column player, as determined before the first time that you play the
game.”

Instructions in other treatments. The instructions were modified accordingly in the
other treatments.

Four-player volunteer’s dilemma. In the four-player volunteer’s dilemma treat-
ment, Game 2 was described as follows:

“You will be repeatedly and randomly matched with 3 other participants (so that you
are a group of 4 people in total) to play the following game.

Both you and each of the other 3 people in your group will (individually and privately)
decide whether to incur a cost to undertake an action (i.e., invest) that can benefit all the
people in the group.

The full benefit from this action is available to all the people in the group if at least
one person from the group undertakes the costly action, and no additional benefit is
accrued if more than one person incurs this cost.

The cost 𝑐 of taking the action will be the same for all people in each group.
In the game, each player in the group decides whether to invest by incurring a cost of

𝑐 points (the value of 𝑐 will change from round to round and will be shown on everyone’s
screen). If a player does not invest, then that player incurs no cost.

If at least one person in your group decides to invest, all people in the group will
receive 200 points whether or not they invested themselves.

Thus, if at least one person (in a specific group) invests, then any person (in that
specific group) who invests earns 200 − 𝑐 points, and any person (in that specific group)
who does not invest earns 200 points.

If in a specific group nobody invests, then each person in that group earns 40 points.
For example, if 𝑐 = 20 and you invest and one more person in your group invests, then

each of the two of you earns 200 − 20 = 180 points and each of the two other people in
your group (who do not incur the cost) earns 200 points.”

Dictator game survey. The dictator game survey was described as follows: “In
the second item type, a hypothetical scenario is described to you and you are asked to
describe how you would act in that scenario. You will be required to spend at least 45
seconds on the first item and 15 seconds for each item after that before you can proceed
to the following item (but you are free to spend more time). The button “Continue” will
only appear on your screen after said amount of time has passed.
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Suppose the participants in the room are randomly (and equally) divided into two
groups: group 1 and group 2. Then, imagine that each participant from group 1 is
repeatedly and randomly (and anonymously) matched with a participant from group 2
and is asked to make a choice about how to divide a set of tokens (which will then be
converted to points) between themself and the participant from group 2. Suppose that
only one of these choices will be randomly selected by the computer to be implemented;
the other choices will not generate points for either participant. Participants in group 2
never make a choice.

Suppose you are in group 1. As you (hypothetically) divide the tokens, you and the
other participant will each earn points (for one randomly selected choice). The choice
that you make is similar to the following:

Suppose that there are 200 tokens.

The number of points that you earn per token that you keep is: 1

The number of points that the other participant earns per token that you pass is: 2

How many tokens would you keep? . . .

How many tokens would you pass? . . .

In this choice, you must divide 200 tokens. You can keep all the tokens, keep some
and pass some, or pass all the tokens. In this example, you will receive 1 point for every
token you keep, and the other participant will receive 2 points for every token you pass.
For example, if you keep 200 and pass 0 tokens, you will receive 200 points, and the other
person will receive no points. If you keep 0 tokens and pass 200, you will receive 0 points
and the other person will receive 400 points. However, you could choose any number
between 0 and 200 to keep. For instance, you could choose to keep 121 tokens and pass
79. In this case, you would earn 121 points, and the other participant would receive 158
points.”

Public goods game. The public goods game instructions were as follows: “You will
be repeatedly and randomly matched with another participant (so that you are a group
of 2 people in total) to play the following game. Each of you will receive 200 points and
will choose how many of these points to keep; the remaining points will go to the group
account. You can keep all the points, keep some and put some in the group account, or
put all of them in the group account. The points that you put in your group account will
be multiplied by some factor 𝑏 > 1 and will then be shared equally by the two members in
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the group (the value of 𝑏 will change from round to round and will be shown on everyone’s
screen).

For example, if you keep 105 points and the other participant in your group keeps 115
points and 𝑏 = 1.5, then the group account will have (200−105)+(200−115) = 180 points,
which after being multiplied by 1.5 become 270 points. Thus, you receive 105+270/2 = 240
points, and the other participant receives 115 + 270/2 = 250 points.

Note: in case you need to use a calculator during this game (or to answer the questions
that will test your understanding of the rules of the game), you can click on the calculator
button that will be on your screen.”

Prisoner’s dilemma. The prisoner dilemma instructions were as follows: “You will
be repeatedly and randomly matched with another participant (so that you are a group
of 2 people in total) to play the following game under various values of the parameter 𝑐

(the value of 𝑐 will change from round to round and will be shown on everyone’s screen):

A B
A 200,200 100 − 𝑐,200 + 𝑐

B 200 + 𝑐,100 − 𝑐 100,100

That is, if you both choose A, then each of you receives 200 points. If you both choose
B, then each of you receives 100 points. If you choose A and the other participant chooses
B, then you receive 100 − 𝑐 points and the other participant receives 200 + 𝑐 points. Last,
if you choose B and the other participant chooses A, then you receive 200 + 𝑐 points and
the other participant receives 100 − 𝑐 points.”

D Screenshots from experiment interface

In comprehension tests, when a participant had given a wrong answer to one or more
questions and clicked Continue, she received the following message: “You have answered
some question(s) incorrectly. Please, read the instructions carefully and try again.”
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Figure 14: Game matrix comprehension screenshot

Figure 15: RBS survey for game SAR1 screenshot

Notes: the button Continue appeared in the bottom-right corner of the screen after 3 minutes
had passed.
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Figure 16: Traveler’s dilemma comprehension test screenshot

Figure 17: Traveler’s dilemma choice screenshot
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Figure 18: Stag hunt game comprehension test screenshot

Figure 19: Stag hunt game choice screenshot
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Figure 20: Public goods game comprehension test screenshot

Figure 21: Public goods game choice screenshot
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Figure 22: Prisoner’s dilemma choice screenshot

Figure 23: Dictator game choice screenshot
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Figure 24: Four-player volunteer’s dilemma comprehension test screenshot

Figure 25: Four-player volunteer’s dilemma choice screenshot
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Figure 26: Kreps game choice screenshot

E Theoretical results under weaker assumptions on regret

This section presents additional theoretical results under weaker assumptions on regret.
Assumption 1 is the weakest assumption to be used.

Assumption 1. For every player 𝑖, 𝑟𝑖(𝑢𝑖,𝑢
𝑏𝑟
𝑖 ,𝑢𝑏

𝑖) satisfies the following:

(i) No rejoicing: player 𝑖’s regret is non-negative, that is, 𝑟𝑖 (𝑥,𝑦,𝑧) ≥ 0 for every
(𝑥,𝑦,𝑧).

(ii) Regret, realized baseline payoff, and best-response payoff: player 𝑖’s regret
is non-increasing in the baseline payoff she would receive if she best-responded,
non-positive if she best-responds, and non-decreasing in the own realized baseline
payoff, that is, (a) 𝑟𝑖 (𝑥′,𝑦,𝑧) ≤ 𝑟𝑖 (𝑥,𝑦,𝑧) for every (𝑥′,𝑦,𝑧),(𝑥,𝑦,𝑧) such that 𝑥′ ≥
𝑥, (b) 𝑟𝑖 (𝑥,𝑥,𝑧) ≤ 0 for every (𝑥,𝑥,𝑧), and (c) 𝑟𝑖 (𝑥,𝑦′,𝑧) ≥ 𝑟𝑖 (𝑥,𝑦,𝑧) for every
(𝑥,𝑦′,𝑧),(𝑥,𝑦,𝑧) such that 𝑦′ ≥ 𝑦.

(iii) Regret and blame: player 𝑖’s regret is non-increasing in the blame payoff, that is,
𝑟𝑖 (𝑥,𝑦,𝑧′) ≤ 𝑟𝑖 (𝑥,𝑦,𝑧) for every (𝑥,𝑦,𝑧′),(𝑥,𝑦,𝑧) such that 𝑧′ ≥ 𝑧.

Assumptions 1(i) and 1(iib) together imply that blame put on the opponent cannot
more than compensate for the regret a non-best-response (i.e., 𝑥 < 𝑦) tends to generate.
To see this, notice that 𝑟𝑖 (𝑥,𝑦,𝑧′) ≥ 𝑟𝑖 (𝑥,𝑥,𝑧) = 0 always, which means that even if 𝑧′ ≫ 𝑧,
the most a high blame payoff 𝑧′ can do is reduce regret down to the level it would have if
𝑖 best-responded.
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Assumption 1 leaves a lot of modeling freedom, since it describes the effects of realized,
best-response, and blame payoffs on regret all else constant. For example, it can allow
for 𝑟(1,20,2) < 𝑟(1,1,1), which seems unreasonable. However, we will see that in the
case of single-agent regret (i.e., when assumption 1(iii) holds with regret constant in
𝑢𝑏

𝑖), these assumptions are sufficient for showing the inability of single-agent regret to
move theoretical predictions away from predictions derived under standard assumptions
on preferences. On the other hand, we will see that strategic regret can give rise to
novel predictions under the stronger assumption 2, which significantly restricts modeling
freedom.

Assumption 2. There exists a function ̃︀𝑟𝑖 : R → R+ and 𝛽𝑖 ∈ [0,1] such that

(i) 𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
= ̃︀𝑟𝑖

(︁
𝑢𝑏𝑟

𝑖 −
(︁
𝛽𝑖𝑢

𝑏
𝑖 + (1 − 𝛽𝑖)𝑢𝑖

)︁)︁
for every (𝑥,𝑦,𝑥),

(ii) ̃︀𝑟𝑖 (𝑡) = 0 for 𝑡 ≤ 0, and

(iii) ̃︀𝑟𝑖(𝑡′) > ̃︀𝑟𝑖(𝑡) for every 𝑡,𝑡′ such that 𝑡′ > max{𝑡,0}.

Assumption 2 restricts modeling freedom requiring regret to be non-decreasing in the
difference between the best-response payoff and a weighted average of the realized and
the blame payoff. For instance, it requires that 𝑟(1,20,2) = ̃︀𝑟𝑖(19 − 𝛽𝑖) > ̃︀𝑟𝑖(0) = 𝑟(1,1,1).
The canonical specification of regret satisfies the general assumptions above.

Lemma 1. If regret is given by (2) with 𝛼𝑖 ≥ 0, 𝛽𝑖 ∈ [0,1], then it satisfies assumption 2.
Also, if regret satisfies assumption 2, then it also satisfies assumption 1.

E.1 Standard assumptions on preferences versus single-agent regret versus
strategic regret: additional comparative results

This section presents more general results on the comparison of NE, single-agent RE, and
strategic RE.

Equilibrium outcomes. Proposition 4 shows that the result of Proposition 2 (i.e., that
regret does not alter the set of pure equilibria) generalizes to 𝑛-player games with weaker
assumptions on regret.

Proposition 4. Under assumption 1(i-ii) and for any game 𝐺, the set of pure NE and
the set of pure RE coincide, 𝑃𝑁𝐸(𝐺) = 𝑃𝑅𝐸(𝐺).

Rationalizable outcomes. Conventions: throughout ⊂ (⊃) denotes weak subset
(superset); convex (concave), means weakly convex (concave).

Before proceeding, we need to define some standard concepts. Let 𝒜 denote the
collection of all Cartesian subsets of 𝑆, that is 𝒜 := {𝐴 ⊂ 𝑆 : ∃𝐴1 ⊂ 𝑆1, 𝐴2 ⊂
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𝑆2 such that 𝐴 = 𝐴1 × 𝐴2}. For 𝐴 ∈ 𝒜, 𝑖 ∈ 𝑁 , 𝑤 ∈ {𝑢,𝑚} denote by 𝑁𝐷𝑤;𝑖(𝐴) ⊂ 𝐴𝑖

the set of actions in 𝐴𝑖 that are not (strictly) dominated when only actions in 𝐴𝑖 and
conjectures over 𝐴𝑗 are considered, under baseline (𝑤 = 𝑢) or modified (𝑤 = 𝑚) pay-
offs, respectively, and let 𝑁𝐷𝑤(𝐴) = 𝑁𝐷𝑤;1(𝐴) × 𝑁𝐷𝑤;2(𝐴). Also, define recursively
𝑁𝐷𝑘

𝑤(𝐴) = 𝑁𝐷𝑤

(︁
𝑁𝐷𝑘−1

𝑤 (𝐴)
)︁

with 𝑁𝐷0
𝑤(𝐴) = 𝐴. Similarly, define 𝑃𝑁𝐷𝑤(𝐴) ⊂ 𝐴 to

be the subset of action profiles such that no action of the profile is dominated when only
pure dominance is used (i.e., when a pure action is said to be dominated only if it is so by
another pure action). Then, define the sets of 𝑢 and 𝑚-rationalizable action profiles, as
well as dominance solvable games as follows.

Definition 6. Given a two-player game 𝐺 := ⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 , (𝑚𝑖)𝑖∈𝑁⟩, for 𝑤 ∈
{𝑢, 𝑚}, 𝑁𝐷∞

𝑤 (𝑆) := ∩𝑘≥1𝑁𝐷𝑘
𝑤(𝑆) is the set of 𝑤-rationalizable action profiles. Similarly,

define 𝑃𝑁𝐷∞
𝑤 (𝑆) := ∩𝑘≥1𝑃𝑁𝐷𝑘

𝑤(𝑆) to be the set of 𝑤-pure rationalizable action profiles.

Definition 7. A two-player game 𝐺 is 𝑤-dominance solvable if the set 𝑁𝐷∞
𝑤 (𝑆) is a

singleton. Similarly, it is 𝑤-pure dominance solvable if 𝑃𝑁𝐷∞
𝑤 (𝑆) is a singleton.

Given a game 𝐺, denote by DR(𝐺) ⊂ R3 the domain of 𝑟1 and 𝑟2 in game 𝐺, that is,

DR(𝐺) :=

⎧⎨⎩(𝑥,𝑦,𝑧) ∈ R3|∃(𝑠1,𝑠2) ∈ 𝑆, 𝑖,𝑗 ∈ {1,2}, 𝑗 ̸= 𝑖 such that
𝑥 = 𝑢𝑖(𝑠𝑖,𝑠𝑗), 𝑦 = 𝑢𝑏𝑟

𝑖 (𝑠𝑗), 𝑧 = 𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

⎫⎬⎭ .

Proposition 5 then draws connections between the set of rationalizable action profiles
(and more generally 𝑘 rounds of iterated deletion of strictly dominated actions) under
baseline payoffs and the rationalizable action profiles when modified payoffs are used
instead.

Proposition 5. Consider a two-player game 𝐺 := ⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 , (𝑚𝑖)𝑖∈𝑁⟩ and let
regret satisfy assumption 1. Then, for every 𝑘 ∈ N∪ {∞},𝐴 ∈ 𝒜 the following statements
hold:

(i) If 1(ii) is satisfied with the regret of each player 𝑖 constant in 𝑢𝑏
𝑖 (single-agent regret),

then 𝑃𝑁𝐷𝑘
𝑢(𝐴) = 𝑃𝑁𝐷𝑘

𝑚(𝐴).

(ii) If for some player 𝑖 assumption 2 is satisfied for 𝛽𝑖 > 0 so that 1(ii) is satisfied with
regret decreasing in 𝑢𝑏

𝑖 (strategic regret) in a subset of the domain DR, then it can
be that 𝑃𝑁𝐷𝑘

𝑢(𝐴) ̸= 𝑃𝑁𝐷𝑘
𝑚(𝐴).

(iii) Assume that for each player 𝑖, 𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
is concave (resp. convex) in 𝑢𝑖. If

assumption 1(ii) is satisfied with the regret of player 𝑖 constant in 𝑢𝑏
𝑖 (single-agent

regret), then 𝑁𝐷𝑘
𝑢(𝐴) ⊃ 𝑁𝐷𝑘

𝑚(𝐴) (resp. 𝑁𝐷𝑘
𝑢(𝐴) ⊂ 𝑁𝐷𝑘

𝑚(𝐴)).

(iv) If assumption 2 is satisfied for 𝛽𝑖 > 0 so that 1(ii) is satisfied with regret decreasing
in 𝑢𝑏

𝑖 (strategic regret) in a subset of the domain DR, then the conclusions of point
(iii) need not follow.
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Remark. If regret is given by (2), for 𝛽𝑖 = 0, 𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
is linear in 𝑢𝑖, so 𝑁𝐷𝑘

𝑢(𝐴) =
𝑁𝐷𝑘

𝑚(𝐴).
Single-agent regret makes little to no difference compared to baseline preferences. Parts

(i) and (iii) show that in every game, the rationalizable outcomes under single-agent regret
are closely connected to those under standard assumptions on preferences. Particularly,
part (iii) says that under the concavity assumption, rationalizability under single-agent
regret rules out all outcomes that rationalizability under baseline preferences does. Thus
for dominance solvable (under baseline payoffs) games the NE and the single-agent RE
coincide. Conversely, under the convexity assumption, if a game is dominance solvable
under single-agent regret, then the unique RE is also the unique NE. Under our canonical
specification of regret given in (2), rationalizability delivers the same result regardless of
whether baseline or single-agent regret payoffs are used. Thus, the result in section 3 that
the traveler’s dilemma is dominance-solvable under single-agent regret—just like under
baseline payoffs—is not a coincidence. Last, part (i) says that rationalizability has the
same implications under single-agent regret as it does under baseline payoffs regardless of
the curvature of 𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
in 𝑢𝑖 when only pure dominance is used.

On the other hand, strategic regret can alter the set of rationalizable outcomes.
Particularly, it can lead to equilibria different from the NE even when a game is dominance
solvable (in baseline payoff terms). The traveler’s dilemma presented in section 3 is an
example of a dominance solvable (under baseline payoffs) game where strategic regret
gives rise to new RE.

E.2 Invariance to positive affine transformations of baseline payoffs

I conclude this section by examining the invariance of RE to positive affine transformations
of the baseline payoffs.

Definition 8. Games 𝐺1 := ⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢1
𝑖 )𝑖∈𝑁 , (𝑚1

𝑖 )𝑖∈𝑁⟩ and 𝐺2 := ⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢2
𝑖 )𝑖∈𝑁 ,

(𝑚2
𝑖 )𝑖∈𝑁⟩ are 𝑢 (resp. 𝑚)-strategically equivalent if for each player 𝑖 ∈ 𝑁 the baseline

(resp. modified) payoff function 𝑢2
𝑖 (resp. 𝑚2

𝑖 ) is a positive affine transformation of the
baseline (resp. modified) payoff function 𝑢1

𝑖 (resp. 𝑚1
𝑖 ).

Proposition 6. Consider two games 𝐺1 := ⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢1
𝑖 )𝑖∈𝑁 , (𝑚1

𝑖 )𝑖∈𝑁⟩ and 𝐺2 :=
⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢2

𝑖 )𝑖∈𝑁 , (𝑚2
𝑖 )𝑖∈𝑁⟩ and let each player 𝑖’s regret be given by (2) (where 𝛼𝑖’s

and 𝛽𝑖’s do not depend on the game). If 𝐺1 and 𝐺2 are 𝑢-strategically equivalent, then
they are also 𝑚-strategically equivalent.

Proposition 6 asserts that under our canonical specification of regret, theoretical
predictions (including best-response correspondences, rationalizable outcomes, and RE)
are invariant to affine transformations of baseline payoffs. Given that theoretical predictions
under baseline payoffs are also invariant to affine transformations of baseline payoffs, it
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follows that an affine transformation of baseline payoffs will not affect the analysis of
section 3.

F Proofs

Proof of Claim 1. I prove the claim for 𝑖 = 1 and under weaker assumptions, namely,
with 𝑣1(𝑥) being the baseline payoff of player 1 from 𝑥 monetary units where 𝑣1 is (strictly)
increasing. For 𝑠1,𝑠2 ≥ 81 we have that 𝑚1(𝑠1 + 1,𝑠2) − 𝑚1(𝑠1,𝑠2) is equal to

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−̃︀𝑟1 (𝑣1(𝑠2 − 1 + 𝑏) − (𝛽1𝑣1(𝑠1 − 𝑏) + (1 − 𝛽1)𝑣1(𝑠2 − 𝑏)))
+̃︀𝑟1 (𝑣1(𝑠2 − 1 + 𝑏) − (𝛽1𝑣1(𝑠1 − 1 − 𝑏) + (1 − 𝛽1)𝑣1(𝑠2 − 𝑏)))

if 𝑠1 ≥ 𝑠2 + 1

𝑣1(𝑠2 − 𝑏) − ̃︀𝑟1 (𝑣1(𝑠2 − 1 + 𝑏) − 𝑣1(𝑠2 − 𝑏))
−𝑣1(𝑠2) + ̃︀𝑟1 (𝑣1(𝑠2 − 1 + 𝑏) − 𝑣1(𝑠2))

if 𝑠1 = 𝑠2

𝑣1(𝑠2) − ̃︀𝑟1 (𝑣1(𝑠1 + 𝑏) − 𝑣1(𝑠2))
−𝑣1(𝑠1 + 𝑏) + ̃︀𝑟1 (𝑣1(𝑠1 + 𝑏) − 𝑣1(𝑠1 + 𝑏))

if 𝑠1 = 𝑠2 − 1

𝑣1(𝑠1 + 1 + 𝑏) − ̃︀𝑟1 (𝑣1(𝑠2 − 1 + 𝑏) − 𝑣1(𝑠1 + 1 + 𝑏))
−𝑣1(𝑠1 + 𝑏) + ̃︀𝑟1 (𝑣1(𝑠2 − 1 + 𝑏) − 𝑣1(𝑠1 + 𝑏))

if 𝑠1 ≤ 𝑠2 − 2.

The part that depends on 𝛽1 is equal to

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−̃︀𝑟1 (𝑡1) + ̃︀𝑟1 (𝑡2) if 𝑠1 ≥ 𝑠2 + 2

−̃︀𝑟1 (𝑡1) if 𝑠1 = 𝑠2 + 1

0 if 𝑠1 ≤ 𝑠2.

where 𝑡1 := 𝑣1(𝑠2 − 1 + 𝑏) − (𝛽1𝑣1(𝑠1 − 𝑏) + (1 − 𝛽1)𝑣1(𝑠2 − 𝑏)) and 𝑡2 := 𝑣1(𝑠2 − 1 + 𝑏) −
(𝛽1𝑣1(𝑠1 − 1 − 𝑏) + (1 − 𝛽1)𝑣1(𝑠2 − 𝑏)). Notice that 𝑡2 ≥ 𝑡1. Then, the derivative of the
expression in the first case (i.e., 𝑠1 ≥ 𝑠2 + 2) with respect to 𝛽1 is equal to

(𝑣1(𝑠1 − 𝑏) − 𝑣1(𝑠2 − 𝑏)) ̃︀𝑟′
1(𝑡1) − (𝑣1(𝑠1 − 1 − 𝑏) − 𝑣1(𝑠2 − 𝑏)) ̃︀𝑟′

1(𝑡2)

≥ (𝑣1(𝑠1 − 𝑏) − 𝑣1(𝑠2 − 𝑏)) (̃︀𝑟′
1(𝑡1) − ̃︀𝑟′

1(𝑡2))

≥ (𝑣1(𝑠1 − 𝑏) − 𝑣1(𝑠2 − 𝑏)) (̃︀𝑟′
1(𝑡1) − ̃︀𝑟′

1(𝑡1)) = 0,

where the first equality follows from ̃︀𝑟′
1 ≥ 0 and 𝑣1 being an increasing function and the

second from ̃︀𝑟1(𝑥) being a concave function for 𝑥 ≥ 0, 𝑣1 being an increasing function,
𝑡2 ≥ 𝑡1 and 𝑠1 > 𝑠2. It is trivial that in the second case (i.e., 𝑠1 = 𝑠2 + 1), the expression
is increasing in 𝛽1. In the last case (i.e., 𝑠1 ≤ 𝑠2), there is no room for blame (whether
player 1 plays 𝑠1 or 𝑠1 + 1), and thus, the expression is constant in 𝛽1.
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Last, for 𝑠2 = 80, everything follows as above with the only difference that 𝑢𝑏𝑟
1 (𝑠2) =

𝑣1(𝑠2), instead of 𝑢𝑏𝑟
1 (𝑠2) = 𝑣1(𝑠2 − 1 + 𝑏). For 𝑠1 = 80, 𝑚1(𝑠1 + 1,𝑠2) − 𝑚1(𝑠1,𝑠2) is

constant in 𝛽1. We have shown that 𝑚1(𝑠1 + 1,𝑠2) − 𝑚1(𝑠1,𝑠2) is non-decreasing in 𝛽1 for
every 𝑠2, and the claim follows. Q.E.D.

Note: I expect the result to hold also under the canonical ̃︀𝑟𝑖(𝑥) := 𝛼𝑖 max{𝑥,0}
but the fact that ̃︀𝑟𝑖(𝑥) is constant in 𝑥 for 𝑥 ≤ 0 in that case creates the following
complication. When 𝑡2 > 0 ≥ 𝑡1, the expression in the first case (i.e., 𝑠1 ≥ 𝑠2 + 2) is equal
to −̃︀𝑟1 (𝑡1) + ̃︀𝑟1 (𝑡2) = ̃︀𝑟1 (𝑡2), which is—locally—decreasing in 𝛽1 (until the increase in 𝛽1

makes 𝑡2 ≤ 0). In the case 𝑡1 ≥ 0 we still get that −̃︀𝑟1 (𝑡1) + ̃︀𝑟1 (𝑡2) is increasing in 𝛽1.
For 𝑡2 ≤ 0, −̃︀𝑟1 (𝑡1) + ̃︀𝑟1 (𝑡2) is constant in 𝛽1.

Given a conjecture 𝜎2, whether the best-response 𝑃𝐵𝑅1(𝜎2) of player 1 moves in the
same direction as 𝛽1 depends on the sign of 𝑚1(𝑃𝐵𝑅1(𝜎2) + 1,𝜎2) − 𝑚1(𝑃𝐵𝑅1(𝜎2),𝜎2).
Thus, given that the complication arises only in small intervals of the domain of ̃︀𝑟1 and
also that 𝑃𝐵𝑅1(𝜎2) ≥ 𝑠2 + 2 with low probability (the probability taken over 𝜎2), we can
expect the claim to still hold despite the complication.

Proof of Proposition 1. Fix an arbitrary 𝑠 ∈ 𝑆 and 𝑖 ∈ 𝑁 . Any best-response
𝑠′

𝑗 ∈ 𝑃𝐵𝑅𝑗(𝑠𝑖) of player 𝑗 to player 𝑖’s action satisfies 𝑢𝑗(𝑠𝑖,𝑠
′
𝑗) ≥ 𝑢𝑗(𝑠𝑖,𝑠𝑗). This combined

with the fact that the game is WUC implies that 𝑢𝑖(𝑠𝑖,𝑠
′
𝑗) ≤ 𝑢𝑖(𝑠𝑖,𝑠𝑗) for any 𝑠′

𝑗 ∈ 𝑃𝐵𝑅𝑗(𝑠𝑖).
Thus, 𝑢𝑏𝑎

𝑖 (𝑠) ≤ 𝑢𝑖(𝑠), so 𝑢𝑏
𝑖(𝑠) = 𝑢𝑖(𝑠). Q.E.D.

Proof of Claim 2. Mixing is optimal for player 𝑖 if and only if

1 − 𝜎*
𝑗 (hare) − 𝜎*

𝑗 (hare) (𝜆 + 𝛼𝑖 max{𝜆 − 𝛽𝑖(1 + 𝜆), 0}) =(︁
1 − 𝜎*

𝑗 (hare)
)︁

[1 − (1 + 𝛼𝑖)Λ + 𝛼𝑖𝛽𝑖 max{Λ − 1, 0}] ,

which gives

BAS𝑖 = (1 + 𝛼𝑖)Λ − 𝛼𝑖𝛽𝑖 max{Λ − 1, 0}
𝜆 + 𝛼𝑖 max{𝜆 − 𝛽𝑖(1 + 𝜆), 0} + (1 + 𝛼𝑖)Λ − 𝛼𝑖𝛽𝑖 max{Λ − 1, 0}

=
(︃

1 + 𝜆 + 𝛼𝑖 max{𝜆 − 𝛽𝑖(1 + 𝜆), 0}
(1 + 𝛼𝑖)Λ − 𝛼𝑖𝛽𝑖 max{Λ − 1, 0}

)︃−1

∈ (0,1).

Then, part (i) follows since given 𝛼𝑖 ≥ 0 and 𝛽𝑖 ∈ [0,1], 𝜆 + 𝛼𝑖 max{𝜆 − 𝛽𝑖(1 + 𝜆), 0} is
increasing in 𝜆 and (1 + 𝛼𝑖)Λ − 𝛼𝑖𝛽𝑖 max{Λ − 1, 0} is increasing in Λ.

For part (ii), notice that under Λ > 1 and 𝛽𝑖 ≤ 𝜆/(1 + 𝜆),

𝑑
(︁

𝜆+𝛼𝑖[𝜆−𝛽𝑖(1+𝜆)]
(1+𝛼𝑖)Λ−𝛼𝑖𝛽𝑖(Λ−1)

)︁
𝑑𝛼𝑖

∝[𝜆 − 𝛽𝑖(1 + 𝜆)] [(1 + 𝛼𝑖)Λ − 𝛼𝑖𝛽𝑖(Λ − 1)]

A30



− [Λ − (Λ − 1)𝛽𝑖] [𝜆 + 𝛼𝑖[𝜆 − 𝛽𝑖(1 + 𝜆)]]

− Λ𝛼𝑖[𝜆 − 𝛽𝑖(1 + 𝜆)]

= − 𝛽𝑖(𝜆 + Λ) < 0,

so BAS𝑖 is increasing in 𝛼𝑖 in this case. Notice that Λ > 1 and 𝛽𝑖 ≤ 𝜆/(1 + 𝜆) make
[𝜆+𝛼𝑖[𝜆−𝛽𝑖(1+𝜆)]]/[(1+𝛼𝑖)Λ−𝛼𝑖𝛽𝑖(Λ−1)] “least” decreasing in 𝛼𝑖. Given that it still is
decreasing under these assumptions, it is still decreasing under Λ ≤ 1 and 𝛽𝑖 ≤ 𝜆/(1 + 𝜆),
or Λ > 1 and 𝛽𝑖 > 𝜆/(1 + 𝜆) or Λ ≤ 1 and 𝛽𝑖 > 𝜆/(1 + 𝜆).45

For part (iii) notice that under Λ > 1 and 𝛽𝑖 ≤ 𝜆/(1 + 𝜆),

𝑑
(︁

𝜆+𝛼𝑖[𝜆−𝛽𝑖(1+𝜆)]
(1+𝛼𝑖)Λ−𝛼𝑖𝛽𝑖(Λ−1)

)︁
𝑑𝛽𝑖

∝ − 𝛼𝑖(1 + 𝜆) [(1 + 𝛼𝑖)Λ − 𝛼𝑖𝛽𝑖(Λ − 1)]

+ 𝛼𝑖(Λ − 1) [𝜆 + 𝛼𝑖[𝜆 − 𝛽𝑖(1 + 𝜆)]]

= − 𝛼𝑖(1 + 𝜆)(1 + 𝛼𝑖)Λ + 𝛼𝑖(Λ − 1)𝜆 (1 + 𝛼𝑖)

∝ − (1 + 𝜆)Λ + (Λ − 1)𝜆 = −(𝜆 + Λ) < 0,

so BAS𝑖 is increasing in 𝛽𝑖 in this case. Similarly, it can be checked that under Λ > 1 and
𝛽𝑖 > 𝜆/(1 + 𝜆), BAS𝑖 is decreasing in 𝛽𝑖. The result under Λ ≤ 1 follows easily. Q.E.D.

Proof of Propositions 2 and 4. Given Lemma 1, it suffices to prove Proposition 4.
Assumption 1 implies that for any action profile 𝑠 ∈ 𝑆 the modified payoff of a player is
not higher than the baseline one: ∀𝑠 ∈ 𝑆,𝑖 ∈ 𝑁 𝑚𝑖(𝑠𝑖,𝑠−𝑖) ≤ 𝑢𝑖(𝑠𝑖,𝑠−𝑖). Also, if player 𝑖

(pure) best-responds, she experiences no regret, and thus, the relation holds with equality:
𝑠𝑖 ∈ 𝑃𝐵𝑅𝑖(𝑠−𝑖) =⇒ 𝑚𝑖(𝑠𝑖,𝑠−𝑖) = 𝑢𝑖(𝑠𝑖,𝑠−𝑖).

First I show that 𝑃𝑁𝐸(𝐺) ⊂ 𝑃𝑅𝐸(𝐺). If there is no pure Nash equilibrium, then it
follows trivially that 𝑃𝑁𝐸(𝐺) ⊂ 𝑃𝑅𝐸(𝐺). Now consider the case where 𝑃𝑁𝐸(𝐺) ̸= ∅;
take an arbitrary equilibrium 𝑠* ∈ 𝑃𝑁𝐸(𝐺). Then for every player 𝑖 ∈ 𝑁 , 𝑢𝑖(𝑠*

𝑖 ,𝑠
*
−𝑖) ≥

𝑢𝑖(𝑠𝑖,𝑠
*
−𝑖) ∀𝑠𝑖 ∈ 𝑆𝑖, and given what we saw above

𝑚𝑖(𝑠*
𝑖 ,𝑠

*
−𝑖) = 𝑢𝑖(𝑠*

𝑖 ,𝑠
*
−𝑖) ≥ 𝑢𝑖(𝑠𝑖,𝜎

*
−𝑖) ≥ 𝑚𝑖(𝑠𝑖,𝜎

*
−𝑖) ∀𝑠𝑖 ∈ 𝑆𝑖,

so 𝑠* ∈ 𝑅𝐸(𝐺). Thus, 𝑃𝑁𝐸(𝐺) ⊂ 𝑃𝑅𝐸(𝐺).
Now, to see that also 𝑃𝑅𝐸(𝐺) ⊂ 𝑃𝑁𝐸(𝐺), suppose by contradiction that ∃𝑠* ∈

𝑃𝑅𝐸(𝐺) ∖ 𝑃𝑁𝐸(𝐺). Since 𝑠* ̸∈ 𝑃𝑁𝐸(𝐺), there exists player 𝑗 ∈ 𝑁 such that
𝑠*

𝑗 ̸∈ 𝑃𝐵𝑅𝑗(𝜎*
−𝑗). It follows that there exists 𝑠′

𝑗 ∈ 𝑆𝑗 ∖ {𝑠*
𝑗} such that 𝑢𝑗(𝑠′

𝑗,𝑠
*
−𝑗) =

max𝑠𝑗∈𝑆𝑗
𝑢𝑗(𝑠𝑗,𝑠

*
−𝑗) > 𝑢𝑗(𝑠*

𝑗 ,𝑠
*
−𝑗). But given assumption 1, we have then that 𝑚𝑗(𝑠′

𝑗,𝑠
*
−𝑗) =

𝑢𝑗(𝑠′
𝑗,𝑠

*
−𝑗) > 𝑢𝑗(𝑠*

𝑗 ,𝑠
*
−𝑗) ≥ 𝑚𝑗(𝑠*

𝑗 ,𝑠
*
−𝑗), which contradicts 𝑠* ∈ 𝑃𝑅𝐸(𝐺). Thus, 𝑃𝑁𝐸(𝐺) ⊃

𝑃𝑅𝐸(𝐺). Q.E.D.
45This can also be checked directly.
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Proof of Proposition 3. Instead of part (i), I prove the more general result that if
𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
is additively separable, linear (and non-decreasing) in 𝑢𝑖 and constant in 𝑢𝑏

𝑖 ,
then 𝑁𝐸(𝐺) = 𝑅𝐸(𝐺).46

First step for part (i): Consider a two-player game 𝐺 and take a NE 𝜎* ∈ 𝑁𝐸(𝐺). By
definition of a NE, we have that for every player 𝑖 ∈ 𝑁 and every 𝑠𝑖 ∈ 𝑆𝑖, 𝑠*

𝑖 ∈ supp(𝜎*
𝑖 ),

𝑢𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) ≥ 𝑢𝑖(𝑠𝑖,𝜎

*
𝑗 ), which implies that for every 𝑠𝑖 ∈ 𝑆𝑖, 𝑠*

𝑖 ∈ supp(𝜎*
𝑖 )

𝑚𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) +

∏︁
𝑠𝑗∈𝑆𝑗

𝑟𝑖

(︁
𝑢𝑖(𝑠*

𝑖 ,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),0

)︁
𝜎*

𝑗 (𝑠𝑗)

≥ 𝑚𝑖(𝑠𝑖,𝜎
*
𝑗 ) +

∏︁
𝑠𝑗∈𝑆𝑗

𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),0
)︁

𝜎*
𝑗 (𝑠𝑗).

where the terms 𝑢𝑏
𝑖(𝑠*

𝑖 ,𝑠𝑗) and 𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗) have been replaced with zeros, since 𝑟𝑖 is constant

in 𝑢𝑏
𝑖 . By additive separability, the terms of 𝑟𝑖 depending on 𝑢𝑏𝑟

𝑖 cancel (in the LHS and
RHS). Thus, by separability and linearity of 𝑟𝑖 in 𝑢𝑖, the inequality above can be written
as

𝑚𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) +

∏︁
𝑠𝑗∈𝑆𝑗

[𝜅𝑢𝑖(𝑠*
𝑖 ,𝑠𝑗) − 𝜅𝑢𝑖(𝑠𝑖,𝑠𝑗)] 𝜎*

𝑗 (𝑠𝑗) ≥ 𝑚𝑖(𝑠𝑖,𝜎
*
𝑗 ) =⇒

𝑚𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) + 𝜅

(︁
𝑢𝑖(𝑠*

𝑖 ,𝜎
*
𝑗 ) − 𝑢𝑖(𝑠𝑖,𝜎

*
𝑗 )
)︁

≥ 𝑚𝑖(𝑠𝑖,𝜎
*
𝑗 )

for some 𝜅 ≤ 0, which given that 𝑢𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) ≥ 𝑢𝑖(𝑠𝑖,𝜎

*
𝑗 ) implies that 𝑚𝑖(𝑠*

𝑖 ,𝜎
*
𝑗 ) ≥ 𝑚𝑖(𝑠𝑖,𝜎

*
𝑗 )

for every player 𝑖 and every 𝑠𝑖 ∈ 𝑆𝑖, 𝑠*
𝑖 ∈ supp(𝜎*

𝑖 ), so 𝜎* ∈ 𝑅𝐸(𝐺). Thus, 𝑁𝐸(𝐺) ⊂
𝑅𝐸(𝐺).

Second step for part (i): Now take an action profile 𝜎* ̸∈ 𝑁𝐸(𝐺). Then, there
exists 𝑖 ∈ 𝑁, 𝑠𝑖 ∈ 𝑆𝑖 such that 𝑢𝑖(𝜎*

𝑖 ,𝜎*
𝑗 ) < 𝑢𝑖(𝑠𝑖,𝜎

*
𝑗 ), which means that there exists

𝑠𝑖 ∈ 𝑆𝑖, 𝑠*
𝑖 ∈ supp(𝜎*

𝑖 ) such that 𝑢𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) < 𝑢𝑖(𝑠𝑖,𝜎

*
𝑗 ) so that by the same arguments

as in the first step, 𝑚𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) + 𝜅

(︁
𝑢𝑖(𝑠*

𝑖 ,𝜎
*
𝑗 ) − 𝑢𝑖(𝑠𝑖,𝜎

*
𝑗 )
)︁

< 𝑚𝑖(𝑠𝑖,𝜎
*
𝑗 ) for some 𝜅 ≤ 0,

which given that 𝑢𝑖(𝑠*
𝑖 ,𝜎

*
𝑗 ) < 𝑢𝑖(𝑠𝑖,𝜎

*
𝑗 ) implies that 𝑚𝑖(𝑠*

𝑖 ,𝜎
*
𝑗 ) < 𝑚𝑖(𝑠𝑖,𝜎

*
𝑗 ). Therefore,

𝑠*
𝑖 ∈ supp(𝜎*

𝑖 ) is not a best-response to 𝜎*
𝑗 under modified payoffs, so 𝜎* ̸∈ 𝑅𝐸(𝐺). Thus,

𝑁𝐸(𝐺) ⊃ 𝑅𝐸(𝐺).
To see why point (ii) holds look at the examples of section 3. Q.E.D.

Proof of Claim 4. I prove the claim under weaker assumptions; namely, that each
player’s baseline payoff is strictly increasing in (and only dependent on) own monetary
units and regret satisfies assumption 1, with 1(iii) satisfied with the regret of each player
𝑖 constant in 𝑢𝑏

𝑖 (single-agent regret).
Also, for ease of notation, I prove the proposition for the specific example of the

traveler’s dilemma described in the text but the proof works the same way for any finite
46Notice that for 𝛽1 = 𝛽2 = 0, 𝑟𝑖

(︀
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︀
= 𝛼𝑖

(︀
𝑢𝑏𝑟

𝑖 − 𝑢𝑖

)︀
, which satisfies these assumptions.
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set of the form {𝑎,𝑎 + 1, . . . ,𝑎 + 𝑚}, 𝑚 ∈ N. Denote by 𝑘𝑖 the number chosen by player 𝑖.
Conjectures with 199 or 200 being the maximum of the support: consider any con-

jecture of 𝑖 that assigns positive probability to 𝑗 choosing 199 or 200. Notice that
𝑚𝑖(200,𝑘𝑗) = 𝑚𝑖(199,𝑘𝑗) for any 𝑘𝑗 ∈ {80, . . . ,198}, since (i) 𝑢𝑖(200,𝑘𝑗) = 𝑢𝑖(199,𝑘𝑗)
for such 𝑘𝑗 by the rules of the game, (ii) 𝑢𝑏𝑟

𝑖 (𝑘𝑗) by definition only depends on 𝑘𝑗, and
(iii) assumption 1(iii) holds with 𝑟𝑖 constant in 𝑢𝑏

𝑖 . Also, 𝑚𝑖(200,𝑘𝑗) < 𝑚𝑖(199,𝑘𝑗) for
𝑘𝑗 ∈ {199,200}, since (i) 𝑢𝑖(200,𝑘𝑗) < 𝑢𝑖(199,𝑘𝑗) for such 𝑘𝑗, (ii) 𝑢𝑏𝑟

𝑖 (𝑘𝑗) only depends on
𝑘𝑗 , and (iii) assumption 1(iii) holds with 𝑟𝑖 constant in 𝑢𝑏

𝑖 . Thus, 200 is not a best-response
to any such conjecture, since 199 delivers a higher (modified) expected payoff given any
such conjecture.

Conjectures with 197 or 198 being the maximum of the support: now consider any
conjecture of 𝑖 that assigns zero probability to 𝑗 choosing 199 or 200 but positive to
choosing 197 or 198. Notice that 𝑚𝑖(200,𝑘𝑗) = 𝑚𝑖(198,𝑘𝑗) for any 𝑘𝑗 ∈ {80, . . . ,196},
since (i) 𝑢𝑖(200,𝑘𝑗) = 𝑢𝑖(198,𝑘𝑗) for such 𝑘𝑗 by the rules of the game, (ii) 𝑢𝑏𝑟

𝑖 (𝑘𝑗) by
definition only depends on 𝑘𝑗, and (iii) assumption 1(iii) holds with 𝑟𝑖 constant in 𝑢𝑏

𝑖 .
Also, 𝑚𝑖(200,𝑘𝑗) < 𝑚𝑖(197,𝑘𝑗) for 𝑘𝑗 ∈ {197,198}, since (i) 𝑢𝑖(200,𝑘𝑗) < 𝑢𝑖(197,𝑘𝑗) for
such 𝑘𝑗, (ii) 𝑢𝑏𝑟

𝑖 (𝑘𝑗) only depends on 𝑘𝑗, and (iii) assumption 1(iii) holds with 𝑟𝑖 constant
in 𝑢𝑏

𝑖 . Thus, 200 is not a best-response to any such conjecture, since 197 delivers a higher
(modified) expected payoff given any such conjecture.

Continuing in the same fashion, we see that 200 is a never-best-response (for either
player). With 200 deleted in the first iteration, 199 is a never-best-response in the second
iteration (where conjectures are constrained to assign probability 0 to 200 being chosen),
and so on. The only rationalizable outcome is the pure NE (80,80). Q.E.D.

Proof of Claim 5. The modified payoffs are given in Figure 27.

Figure 27: The Kreps game: modified payoffs

(a) Row player payoffs

L M N R

𝑇 500 300 − 10𝛼1·
max{1−20𝛽1, 0}

310 − 10𝛼1·
max{2−19𝛽1, 0}

320 − 10𝛼1·
max{3−18𝛽1, 0}

𝐵
300−10𝛼1·
(20 − 5𝛽1) 310 330 350

(b) Column player payoffs

L M N R
𝑇 350 345 − 5𝛼2 𝛿 − (350 − 𝛿)𝛼2 50 − 10𝛼2(30 − 29𝛽2)
𝐵 50 − 10𝛼2(29 − 30𝛽2) 200 − 140𝛼2 𝛿 − (340 − 𝛿)𝛼2 340

Clearly, in any mixed RE the row player should be mixing for otherwise the column
player has a unique pure best-response. For mixing by the row player to be optimal, it

A33



must be that 𝜎2(𝐿) > 0, since B dominates T when the column player chooses 𝜎2(𝐿) = 0.
Particularly, if a totally mixed action 𝜎1 : {𝑇,𝐵} → Δ2 of the row player makes L and at
least one of M, N, or R a best-response, then a mixed RE where the row player plays 𝜎1

and the column player mixes between L and some of the other actions exists.
The column player is indifferent between L and M if and only if

0 = 5(1 + 𝛼2)𝜎1(𝑇 ) + [−150 + 10𝛼2 (14 − (29 − 30𝛽2))] (1 − 𝜎1(𝑇 )) ⇐⇒

𝜎1(𝑇 ) = 30 − 𝛼2 (28 − 2(29 − 30𝛽2))
31 − 𝛼2 (27 − 2(29 − 30𝛽2))

= 1 + 𝛼2 − 2𝛼2𝛽2

(1 + 𝛼2)31/30 − 2𝛼2𝛽2
.

The column player is indifferent between L and N if and only if

𝜎1(𝑇 ) = (1 + 𝛼2)(𝛿 − 50)/300 − 𝛼2𝛽2

1 + 𝛼2 − 𝛼2𝛽2
.

The column player is indifferent between L and R if and only if

𝜎1(𝑇 ) = (1 + 𝛼2)29 − 30𝛼2𝛽2

(1 + 𝛼2 − 𝛼2𝛽2)59 .

Thus, L is a best-response if and only if

𝜎1(𝑇 ) ≥ max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 + 𝛼2 − 2𝛼2𝛽2

(1 + 𝛼2)31/30 − 2𝛼2𝛽2
,
(1 + 𝛼2)(𝛿 − 50)/300 − 𝛼2𝛽2

1 + 𝛼2 − 𝛼2𝛽2
,

(1 + 𝛼2)29 − 30𝛼2𝛽2

(1 + 𝛼2 − 𝛼2𝛽2)59

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

First I show that R is never part of a mixed equilibrium. For this, it is sufficient to show
that the first term in the brackets above is higher than the last one. This is true if and
only if

1 + 𝛼2 − 2𝛼2𝛽2

(1 + 𝛼2)31/30 − 2𝛼2𝛽2
>

(1 + 𝛼2)29 − 30𝛼2𝛽2

(1 + 𝛼2 − 𝛼2𝛽2)59 ⇐⇒

59(1 + 𝛼2 − 2𝛼2𝛽2)(1 + 𝛼2 − 𝛼2𝛽2)

−[(1 + 𝛼2)31/30 − 2𝛼2𝛽2][(1 + 𝛼2)29 − 30𝛼2𝛽2] > 0 (3)

The partial derivative of the expression in the LHS with respect to 𝛽2 is

59[−2𝛼2(1 + 𝛼2 − 𝛼2𝛽2) − 𝛼2(1 + 𝛼2 − 2𝛼2𝛽2)] + 2𝛼2[(1 + 𝛼2)29 − 30𝛼2𝛽2]

+ 30𝛼2[(1 + 𝛼2)31/30 − 2𝛼2𝛽2]

=59𝛼2(−3 − 3𝛼2 + 4𝛼2𝛽2) + 𝛼2[(1 + 𝛼2)89 − 120𝛼2𝛽2]

=𝛼2 [116𝛼2𝛽2 − (1 + 𝛼2)89] ≤ 𝛼2 (347𝛼2/15 − 89) ≤ 0

A34



where the first inequality follows from 𝛽2 ≤ 29/30 and the second from 𝛼2 ≤ 1.
Inequality (3) indeed holds for 𝛽2 = 29/30 and 𝛼2 ≤ 1, and thus, for every 𝛽2 ∈

[0,29/30].
Now it remains to see when both M and N are best-responses along with L. This is

true if and only if

1 + 𝛼2 − 2𝛼2𝛽2

(1 + 𝛼2)31/30 − 2𝛼2𝛽2
= (1 + 𝛼2)(𝛿 − 50)/300 − 𝛼2𝛽2

1 + 𝛼2 − 𝛼2𝛽2
⇐⇒

𝛿 = 𝛿* := 50 + 300 1 + 𝛼2 − 59𝛼2𝛽2/30
(1 + 𝛼2)31/30 − 2𝛼2𝛽2

.

Last, when the column player mixes between L and N, the row player is indifferent
between T and B if and only if

0 =10 (20 + 𝛼1(20 − 5𝛽1)) 𝜎2(𝐿) − 10 (2 + 𝛼1 max{2 − 19𝛽1, 0}) (1 − 𝜎2(𝐿)) ,

and the result follows. Q.E.D.

Proofs of Claim 6 Volunteering is optimal for 𝑖 if and only if

𝜑1(1 − 𝜉𝑖) + [𝜑1 − 𝛼𝑖(𝜑2 − 𝜑1)] 𝜉𝑖 ≥ 𝜑2𝜉𝑖 + [0 − 𝛼𝑖 max {𝜑1 − 𝛽𝑖𝜑2,0}] (1 − 𝜉𝑖),

or equivalently,

𝜉𝑖 ≤ 𝜉𝑖 := 𝜑1 + 𝛼𝑖 max {𝜑1 − 𝛽𝑖𝜑2,0}
(1 + 𝛼𝑖)(𝜑2 − 𝜑1) + 𝜑1 + 𝛼𝑖 max {𝜑1 − 𝛽𝑖𝜑2,0}

.

Q.E.D.

Proof of Lemma 1. It is trivial, and thus, omitted.

Proof of Proposition 5. In proving Proposition 5, we will use the following Lemma,
which studies the relation between dominance under baseline and dominance under
modified payoffs. Dominance relations between actions are for the most part preserved
when we move from baseline to single-agent regret preferences, which is however not true
with strategic regret.

Lemma 2. Consider a two-player game 𝐺 := ⟨𝑁, (𝑆𝑖)𝑖∈𝑁 , (𝑢𝑖)𝑖∈𝑁 , (𝑚𝑖)𝑖∈𝑁⟩ and let regret
satisfy assumption 1.

(i) If 1(ii) is satisfied with the regret of player 𝑖 constant in 𝑢𝑏
𝑖 (single-agent regret),

then ∀𝑠𝑖,𝑠
′
𝑖 ∈ 𝑆𝑖 and ∀𝐴𝑗 ⊂ 𝑆𝑗

𝑢𝑖(𝑠𝑖,𝑠𝑗) > 𝑢𝑖(𝑠′
𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗 ⇐⇒ 𝑚𝑖(𝑠𝑖,𝑠𝑗) > 𝑚𝑖(𝑠′

𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗,
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(ii) If assumption 2 is satisfied for 𝛽𝑖 > 0 so that 1(ii) is satisfied with regret decreasing
in 𝑢𝑏

𝑖 (strategic regret) in a subset of the domain DR, then the above does not follow.

(iii) Assume that 𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
is concave (resp. convex) in 𝑢𝑖. If 1(ii) is satisfied with

the regret of player 𝑖 constant in 𝑢𝑏
𝑖 (single-agent regret), then ∀(𝜎𝑖,𝑠

′
𝑖) ∈ Δ(𝑆𝑖) × 𝑆𝑖

and ∀𝐴𝑗 ⊂ 𝑆𝑗

𝑢𝑖(𝜎𝑖,𝑠𝑗) > 𝑢𝑖(𝑠′
𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗

(resp. ⇐= )=⇒ 𝑚𝑖(𝜎𝑖,𝑠𝑗) > 𝑚𝑖(𝑠′
𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗.

(iv) If assumption 2 is satisfied for 𝛽𝑖 > 0 so that 1(ii) is satisfied with regret decreasing
in 𝑢𝑏

𝑖 (strategic regret) in a subset of the domain DR, then the above does not follow.

Proof of Lemma 2.

(i) =⇒ : For any 𝑠𝑖,𝑠
′
𝑖 ∈ 𝑆𝑖 and ∀𝐴𝑗 ⊂ 𝑆𝑗 we have that if 𝑢𝑖(𝑠𝑖,𝑠𝑗) > 𝑢𝑖(𝑠′

𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗 ,
then by definition of modified utility ∀𝑠𝑗 ∈ 𝐴𝑗

𝑚𝑖(𝑠𝑖,𝑠𝑗) + 𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
>

𝑚𝑖(𝑠′
𝑖,𝑠𝑗) + 𝑟𝑖

(︁
𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)

)︁
,

Given (a) assumption 1(ii), (b) that regret is constant in its third argument, and (c)
𝑢𝑖(𝑠𝑖,𝑠𝑗) > 𝑢𝑖(𝑠′

𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗, we get that ∀𝑠𝑗 ∈ 𝐴𝑗

𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
≤ 𝑟𝑖

(︁
𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)

)︁
,

which combined with the first inequality implies that ∀𝑠𝑗 ∈ 𝐴𝑗 , 𝑚𝑖(𝑠𝑖,𝑠𝑗) > 𝑚𝑖(𝑠′
𝑖,𝑠𝑗).

⇐= : I prove the contrapositive. For any 𝑠𝑖,𝑠
′
𝑖 ∈ 𝑆𝑖 and ∀𝐴𝑗 ⊂ 𝑆𝑗 if ∃𝑠𝑗 ∈ 𝐴𝑗 such

that 𝑢𝑖(𝑠𝑖,𝑠𝑗) ≤ 𝑢𝑖(𝑠′
𝑖,𝑠𝑗), then for such 𝑠𝑗

𝑚𝑖(𝑠𝑖,𝑠𝑗) + 𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
≤

𝑚𝑖(𝑠′
𝑖,𝑠𝑗) + 𝑟𝑖

(︁
𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)

)︁
,

which given (a) assumption 1(ii), (b) that regret is constant in its third argument,
and (c) 𝑢𝑖(𝑠𝑖,𝑠𝑗) ≤ 𝑢𝑖(𝑠′

𝑖,𝑠𝑗), implies that 𝑚𝑖(𝑠𝑖,𝑠𝑗) ≤ 𝑚𝑖(𝑠′
𝑖,𝑠𝑗) for such 𝑠𝑗.

(ii) Consider the game depicted in Figure 28. With baseline payoffs 𝐵 dominates 𝑇 , but
with modified ones it does not.

(iii) With 𝑟𝑖(𝑢𝑖,𝑢
𝑏𝑟
𝑖 ,𝑢𝑏

𝑖) concave in 𝑢𝑖, as in (i) we get that ∀(𝜎𝑖,𝑠
′
𝑖) ∈ Δ(𝑆𝑖) × 𝑆𝑖 and

∀𝐴𝑗 ⊂ 𝑆𝑗, if 𝑢𝑖(𝜎𝑖,𝑠𝑗) > 𝑢𝑖(𝑠′
𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗 then
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Figure 28: Game with baseline payoffs (on the left) and with modified payoffs with strategic
regret (on the right)

𝐿 𝑀 𝑅
𝑇 1,1 1,1 4,2
𝐶 4,3 4,2 -2,1
𝐵 2,1 2,3 5,2

𝐿 𝑀 𝑅
𝑇 1,1 1,1 3,2
𝐶 4,3 4,1 -3,0
𝐵 0,1 0,3 5,1

Notes: the modified payoffs are given by functions (1) and (2) for 𝛼1 = 𝛼2 = 1 and 𝛽1 = 𝛽2 = 1.

𝑚𝑖(𝜎𝑖,𝑠𝑗) +
∏︁

𝑠𝑖∈𝑆𝑖

𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
𝜎𝑖(𝑠𝑖)

> 𝑚𝑖(𝑠′
𝑖,𝑠𝑗) + 𝑟𝑖

(︁
𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)

)︁
∀𝑠𝑗 ∈ 𝐴𝑗.

Then, to show that 𝑚𝑖(𝜎𝑖,𝑠𝑗) > 𝑚𝑖(𝑠′
𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗, it is sufficient to show that

∀𝑠𝑗 ∈ 𝐴𝑗

∏︁
𝑠𝑖∈𝑆𝑖

𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
𝜎𝑖(𝑠𝑖) ≤ 𝑟𝑖

(︁
𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)

)︁
.

By concavity of 𝑟𝑖 in its first argument (and since 𝑟𝑖 is constant in its third argument)
and using Jensen’s inequality we get that ∀𝑠𝑗 ∈ 𝐴𝑗

∏︁
𝑠𝑖∈𝑆𝑖

𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
𝜎𝑖(𝑠𝑖) ≤ 𝑟𝑖

(︁
𝑢𝑖(𝜎𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠′

𝑖,𝑠𝑗)
)︁

.

Also, by assumption 1(ii) and the fact that 𝑢𝑖(𝜎𝑖,𝑠𝑗) > 𝑢𝑖(𝑠′
𝑖,𝑠𝑗) ∀𝑠𝑗 ∈ 𝐴𝑗, it follows

that for every 𝑠𝑗 ∈ 𝐴𝑗, 𝑟𝑖(𝑢𝑖(𝜎𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)) ≤ 𝑟𝑖(𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)),

which combined with the inequality above gives the desired sufficient condition.

With 𝑟𝑖(𝑢𝑖,𝑢
𝑏𝑟
𝑖 ,𝑢𝑏

𝑖) convex in 𝑢𝑖 I show the contrapositive. Assume 𝑢𝑖(𝜎𝑖,𝑠𝑗) ≤
𝑢𝑖(𝑠′

𝑖,𝑠𝑗), ∃𝑠𝑗 ∈ 𝐴𝑗. Then, for such 𝑠𝑗

𝑚𝑖(𝜎𝑖,𝑠𝑗) +
∏︁

𝑠𝑖∈𝑆𝑖

𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
𝜎𝑖(𝑠𝑖)

≤ 𝑚𝑖(𝑠′
𝑖,𝑠𝑗) + 𝑟𝑖

(︁
𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)

)︁
.

Thus, to show that 𝑚𝑖(𝜎𝑖,𝑠𝑗) ≤ 𝑚𝑖(𝑠′
𝑖,𝑠𝑗), it is sufficient to show that for such 𝑠𝑗

∏︁
𝑠𝑖∈𝑆𝑖

𝑟𝑖

(︁
𝑢𝑖(𝑠𝑖,𝑠𝑗),𝑢𝑏𝑟

𝑖 (𝑠𝑗),𝑢𝑏
𝑖(𝑠𝑖,𝑠𝑗)

)︁
𝜎𝑖(𝑠𝑖) ≥ 𝑟𝑖

(︁
𝑢𝑖(𝑠′

𝑖,𝑠𝑗),𝑢𝑏𝑟
𝑖 (𝑠𝑗),𝑢𝑏

𝑖(𝑠′
𝑖,𝑠𝑗)

)︁
,

which follows (similarly as above) by convexity of 𝑟𝑖 combined with Jensen’s inequal-
ity, the fact that 𝑟𝑖 is constant in its third argument, and assumption 1(ii) combined
with the fact that 𝑢𝑖(𝜎𝑖,𝑠𝑗) ≤ 𝑢𝑖(𝑠′

𝑖,𝑠𝑗).
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(iv) For a counterexample see point (ii) above, where it can be checked that the regret
of the row player is constant (and thus, linear) in her realized payoff over DR.

We now proceed with the proof of Proposition 5.

(i) Given point (i) from Lemma 2 the exact same procedure of iterated deletion of
strictly dominated strategies is used under baseline and modified payoffs.

(ii) Consider the game depicted in Figure 28. With baseline payoffs 𝐵 dominates 𝑇 ,
then 𝑀 dominates 𝑅, then 𝐶 dominates 𝐵, and finally 𝐿 dominates 𝑀 . However,
with modified payoffs, no action is dominated.

(iii) If 𝑟𝑖

(︁
𝑢𝑖,𝑢

𝑏𝑟
𝑖 ,𝑢𝑏

𝑖

)︁
is concave (resp. convex) in 𝑢𝑖, then by point (iii) of Lemma 2

the exact same procedure of iterated deletion of strictly dominated strategies that
is used under baseline (resp. modified) payoffs can be used under modified (resp.
baseline) payoffs—and after the procedure is finished, additional actions may be
deleted, thus the inclusion relation.

(iv) For counterexamples see point (ii) above. Q.E.D.

Proof of Proposition 6. For any action profile 𝑠 ∈ 𝑆 the best-responses and the
actions that give the blame payoffs are the same in the two 𝑢-strategically equivalent
games. Then, for modified payoffs ∀𝑠 ∈ 𝑆, 𝑖 ∈ 𝑁 (suppressing functional notation) we
have:

𝑚2
𝑖 (𝑠𝑖,𝑠𝑗) = 𝑢2

𝑖 − 𝛼𝑖 max
{︁
𝑢2;𝑝𝑏𝑟

𝑖 −
[︁
𝛽𝑖𝑢

2;𝑏
𝑖 + (1 − 𝛽𝑖)𝑢2

𝑖

]︁
,0
}︁

= 𝜅𝑖𝑢
1
𝑖 + 𝜆𝑖 − 𝛼𝑖 max

⎧⎪⎨⎪⎩
𝜅𝑖𝑢

1;𝑝𝑏𝑟
𝑖 + 𝜆𝑖 −

[︁
𝛽𝑖

(︁
𝜅𝑖𝑢

1;𝑏
𝑖 + 𝜆𝑖

)︁
+ (1 − 𝛽𝑖)

(︁
𝜅𝑖𝑢

1
𝑖 + 𝜆𝑖

)︁]︁
, 0

⎫⎪⎬⎪⎭
= 𝜅𝑖𝑢

1
𝑖 + 𝜆𝑖 − 𝛼𝑖𝜅𝑖 max

{︁
𝑢1;𝑝𝑏𝑟

𝑖 −
[︁
𝛽𝑖𝑢

1;𝑏
𝑖 + (1 − 𝛽𝑖)𝑢1

𝑖

]︁
, 0
}︁

= 𝜅𝑖

(︁
𝑢1

𝑖 − 𝛼𝑖 max
{︁
𝑢1;𝑝𝑏𝑟

𝑖 −
[︁
𝛽𝑖𝑢

1;𝑏
𝑖 + (1 − 𝛽𝑖)𝑢1

𝑖

]︁
, 0
}︁)︁

+ 𝜆𝑖

= 𝜅𝑖𝑚
1
𝑖 (𝑠𝑖,𝑠𝑗) + 𝜆𝑖,

so an affine transformation of baseline payoffs implies an affine transformation (the same
one) of modified payoffs. Q.E.D.
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